# PRODUCT ENVIRONMENTAL FOOTPRINT CATEGORY RULES

Leather

Final version 25 April 2018 Valid until 31 December 2020

De Rosa-Giglio P.<sup>1</sup>, Fontanella A.<sup>3</sup>, Gonzalez-Quijano G.<sup>2</sup>, Ioannidis I.<sup>1</sup>, Nucci B.<sup>3</sup>, Brugnoli F.<sup>4</sup> on behalf of the Leather Pilot Technical Secretariat

<sup>1</sup>Unione Nazionale Industria Conciaria (UNIC) <sup>2</sup>Confederation of National Associations of Tanners and Dressers of the European Community (COTANCE) <sup>3</sup>Scuola Superiore Sant'Anna (SSSUP) <sup>4</sup>Spin 360

# 1 Index

| LISI                                                                      | T OF TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                              | III                                                                                          |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| LIST                                                                      | T OF FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                             | v                                                                                            |
| ACR                                                                       | RONYMS                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VI                                                                                           |
| DEF                                                                       | FINITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                            |
| 1.                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                            |
| 2.                                                                        | GENERAL INFORMATION ABOUT THE PEFCR                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                            |
| 2.1                                                                       | L TECHNICAL SECRETARIAT                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                            |
|                                                                           | 2 Consultations and stakeholders                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                              |
|                                                                           | REVIEW PANEL AND REVIEW REQUIREMENTS OF THE PEFCR                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                              |
| 2.4                                                                       | REVIEW STATEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                            |
|                                                                           | 5 GEOGRAPHIC VALIDITY                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |
| 2.6                                                                       | 5 LANGUAGE                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                            |
| 2.7                                                                       | CONFORMANCE TO OTHER DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                            |
| 3.                                                                        | PEFCR SCOPE                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                            |
|                                                                           | PRODUCT CLASSIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                              |
| 3.2                                                                       | 2 Representative product(s)                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                            |
| 3.3                                                                       | Beclared Unit and Reference flow                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                            |
| 3.4                                                                       | I System boundary                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                            |
| 3.5                                                                       | 5 EF IMPACT ASSESSMENT                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                           |
| 3.6                                                                       | 5 LIMITATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                           |
| 4.                                                                        | MOST RELEVANT IMPACT CATEGORIES, LIFE CYCLE STAGES AND PROCESSES                                                                                                                                                                                                                                                                                                                                                                                         | 13                                                                                           |
| 5.                                                                        | LIFE CYCLE INVENTORY                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23                                                                                           |
|                                                                           | LIST OF MANDATORY COMPANY-SPECIFIC DATA                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                              |
| 5.3                                                                       | LIST OF PROCESSES EXPECTED TO BE RUN BY THE COMPANY                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                              |
|                                                                           | 2 LIST OF PROCESSES EXPECTED TO BE RUN BY THE COMPANY                                                                                                                                                                                                                                                                                                                                                                                                    | 55                                                                                           |
| 5.4                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55<br>56                                                                                     |
|                                                                           | 3 DATA GAPS                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55<br>56<br>56                                                                               |
| 5.4                                                                       | 3 Data gaps<br>1 Data quality requirements                                                                                                                                                                                                                                                                                                                                                                                                               | 55<br>56<br>56<br>56                                                                         |
| 5.4.<br>5.5                                                               | 3 Data gaps<br>1 Data quality requirements<br>1.1 Company-specific datasets                                                                                                                                                                                                                                                                                                                                                                              | 55<br>56<br>56<br>56<br>59                                                                   |
| 5.4<br>5.5<br>5.5                                                         | B DATA GAPS<br>DATA QUALITY REQUIREMENTS<br>1.1 COMPANY-SPECIFIC DATASETS<br>DATA NEEDS MATRIX (DNM)                                                                                                                                                                                                                                                                                                                                                     | 55<br>56<br>56<br>56<br>59<br>60                                                             |
| 5.4<br>5.5<br>5.5<br>5.5                                                  | B DATA GAPS<br>DATA QUALITY REQUIREMENTS<br>A.1 COMPANY-SPECIFIC DATASETS<br>DATA NEEDS MATRIX (DNM)<br>5.1 PROCESSES IN SITUATION 1                                                                                                                                                                                                                                                                                                                     | 55<br>56<br>56<br>56<br>59<br>60<br>61                                                       |
| 5.4<br>5.5<br>5.5<br>5.5                                                  | 3 DATA GAPS<br>4 DATA QUALITY REQUIREMENTS<br>4.1 COMPANY-SPECIFIC DATASETS<br>5 DATA NEEDS MATRIX (DNM)<br>5.1 PROCESSES IN SITUATION 1<br>5.2 PROCESSES IN SITUATION 2                                                                                                                                                                                                                                                                                 | 55<br>56<br>56<br>56<br>59<br>60<br>61<br>62                                                 |
| 5.4<br>5.5<br>5.5<br>5.5<br>5.5                                           | B DATA GAPS<br>DATA QUALITY REQUIREMENTS<br>A.1 COMPANY-SPECIFIC DATASETS<br>DATA NEEDS MATRIX (DNM)<br>5.1 PROCESSES IN SITUATION 1<br>5.2 PROCESSES IN SITUATION 2<br>5.3 PROCESSES IN SITUATION 3                                                                                                                                                                                                                                                     | 55<br>56<br>56<br>59<br>60<br>61<br>62<br>63                                                 |
| 5.4<br>5.5<br>5.5<br>5.5<br>5.5<br>5.6<br>5.7                             | 3 DATA GAPS<br>4 DATA QUALITY REQUIREMENTS<br>4.1 COMPANY-SPECIFIC DATASETS<br>5 DATA NEEDS MATRIX (DNM)<br>5.1 PROCESSES IN SITUATION 1<br>5.2 PROCESSES IN SITUATION 2<br>5.3 PROCESSES IN SITUATION 3<br>5 WHICH DATASETS TO USE?                                                                                                                                                                                                                     | 55<br>56<br>56<br>56<br>59<br>60<br>61<br>62<br>63<br>63                                     |
| 5.4<br>5.5<br>5.5<br>5.5<br>5.6<br>5.7<br>5.8                             | B DATA GAPS<br>DATA QUALITY REQUIREMENTS<br>A.1 COMPANY-SPECIFIC DATASETS<br>DATA NEEDS MATRIX (DNM)<br>DATA NEEDS MATRIX (DNM)<br>A PROCESSES IN SITUATION 1<br>2.2 PROCESSES IN SITUATION 2<br>3.3 PROCESSES IN SITUATION 2<br>3.4 PROCESSES IN SITUATION 3<br>5.5 WHICH DATASETS TO USE?<br>7 HOW TO CALCULATE THE AVERAGE DQR OF THE STUDY                                                                                                           | 55<br>56<br>56<br>59<br>60<br>61<br>63<br>63<br>63                                           |
| 5.4<br>5.5<br>5.5<br>5.5<br>5.6<br>5.7<br>5.8<br>5.9                      | B DATA GAPS     DATA QUALITY REQUIREMENTS     DATA QUALITY REQUIREMENTS     DATA NEEDS MATRIX (DNM)     DATA NEEDS MATRIX (DNM)     DATA NEEDS MATRIX (DNM)     DATA NEEDS IN SITUATION 1     DATA SETS IN SITUATION 2     PROCESSES IN SITUATION 2     S.2 PROCESSES IN SITUATION 2     S.3 PROCESSES IN SITUATION 3     Which datasets to use?     How to calculate the average DQR of the study     Allocation rules                                  | 55<br>56<br>56<br>56<br>59<br>60<br>61<br>62<br>63<br>63<br>63<br>63                         |
| 5.4<br>5.5<br>5.5<br>5.5<br>5.5<br>5.6<br>5.7<br>5.8<br>5.9<br>5.1        | B DATA GAPS<br>DATA QUALITY REQUIREMENTS<br>A.1 COMPANY-SPECIFIC DATASETS<br>DATA NEEDS MATRIX (DNM)<br>DATA NEEDS MATRIX (DNM)<br>A PROCESSES IN SITUATION 1<br>2. PROCESSES IN SITUATION 2<br>3. PROCESSES IN SITUATION 2<br>3. PROCESSES IN SITUATION 3<br>3. PROCESSES IN SITUATION 3<br>5. WHICH DATASETS TO USE?<br>7 HOW TO CALCULATE THE AVERAGE DQR OF THE STUDY<br>3. ALLOCATION RULES<br>9 ELECTRICITY MODELLING                              | 55<br>56<br>56<br>59<br>60<br>61<br>63<br>63<br>63<br>63<br>63<br>63                         |
| 5.4.<br>5.5.<br>5.5.<br>5.6<br>5.7<br>5.8<br>5.9<br>5.1(<br>5.1)          | DATA GAPS     DATA QUALITY REQUIREMENTS     DATA QUALITY REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                                                    | 55<br>56<br>56<br>56<br>59<br>60<br>61<br>62<br>63<br>63<br>63<br>63<br>63<br>63<br>71<br>73 |
| 5.4<br>5.5<br>5.5<br>5.5<br>5.6<br>5.7<br>5.8<br>5.9<br>5.1<br>5.1<br>5.1 | DATA GAPS     DATA QUALITY REQUIREMENTS     DATA QUALITY REQUIREMENTS     DATA NEEDS MATRIX (DNM)     DATA NEEDS MATRIX (DNM)     DATA NEEDS MATRIX (DNM)     DATA NEEDS IN SITUATION 1     DATA NEEDS IN SITUATION 2     PROCESSES IN SITUATION 2     PROCESSES IN SITUATION 3     WHICH DATASETS TO USE?     HOW TO CALCULATE THE AVERAGE DQR OF THE STUDY     ALLOCATION RULES     ELECTRICITY MODELLING     MODELLING OF WASTES AND RECYCLED CONTENT | 55<br>56<br>56<br>59<br>60<br>61<br>63<br>63<br>63<br>63<br>63<br>63<br>71<br>73<br>73       |

| 7.  | PEF RESULTS                                                     | 77    |
|-----|-----------------------------------------------------------------|-------|
| 7.1 | BENCHMARK VALUES                                                | 77    |
| 7.2 | PEF profile                                                     | 77    |
| 7.3 | ADDITIONAL TECHNICAL INFORMATION                                | 78    |
| 7.4 | ADDITIONAL ENVIRONMENTAL INFORMATION                            | 78    |
| 8.  | VERIFICATION                                                    | 78    |
| 9.  | REFERENCES                                                      | 79    |
| AN  | NEX 1 – LIST OF EF NORMALISATION AND WEIGHTING FACTORS          | 81    |
| AN  | NEX 2 - CHECK-LIST FOR THE PEF STUDY                            | 85    |
| AN  | NEX 3 - CRITICAL REVIEW REPORT OF THE PEFCR                     | 86    |
| AN  | NEX 4 - REASONING FOR DEVELOPMENT OF PEFCR                      | 108   |
| AN  | NEX 5 – Representative Products                                 | 109   |
| Use | AND APPLICATION MIX                                             | .109  |
| TEC | HNOLOGICAL MIX                                                  | .109  |
| ANI | MAL MIX - ORIGIN OF INPUT PROCESSING ITEMS AND FINISHED LEATHER | .110  |
| RPs | SPECIFICATION                                                   | .111  |
| AN  | NEX 6 – DOWNSTREAM SCENARIOS                                    | 113   |
| CAL | culations of Stored Carbon Content in Finished Leather Products | .113  |
| BIO | GENIC STORED CARBON (BSC)                                       | .113  |
| Sто | RED CARBON FROM CHEMICALS (SCC)                                 | .117  |
|     | GENIC STORED CARBON (BSC)                                       |       |
| AN  | NEX 7 – DEFAULT VALUES                                          | . 119 |
| AN  | NEX 8 – BACKGROUND INFORMATION ON METHODOLOGICAL CHOICES        | 131   |
| All | DCATION STEP-BY-STEP METHODOLOGY DESCRIPTION                    | .131  |

# List of tables

| Table 1 List of the organizations in the TS                                                              | 1     |
|----------------------------------------------------------------------------------------------------------|-------|
| Table 2 Information on public consultations                                                              | 3     |
| Table 3 Members of the review panel                                                                      | 3     |
| Table 4 Classification of Products by Activity (CPA) for the products included in this PEFCR             | 5     |
| Table 5 Representative Products                                                                          | 6     |
| Table 6 Key aspects of the DU                                                                            | 7     |
| Table 7 Reference flows per Representative Product                                                       | 8     |
| Table 8 Life cycle stages                                                                                | 9     |
| Table 9 List of the impact categories to be used to calculate the PEF profile                            | 11    |
| Table 10 List of the most relevant processes for the product group RP1                                   | 15    |
| Table 11 List of the most relevant processes for the product group RP2                                   | 17    |
| Table 12 List of the most relevant processes for the product group RP3                                   | 19    |
| Table 13 List of the most relevant processes for the product group RP4                                   | 22    |
| Table 14 Mandatory company-specific data                                                                 | 25    |
| Table 15 Mandatory company-specific emissions                                                            | 55    |
| Table 16 How to assess the value of the DQR criteria for datasets with company-specific information $\_$ | 58    |
| Table 17 Data Needs Matrix (DNM) . *Disaggregated datasets shall be used                                 | 59    |
| Table 18 How to assess the value of the DQR criteria when secondary datasets are used                    | 62    |
| Table 19 Allocation rules                                                                                | 64    |
| Table 20 Allocation factors for bovine leather                                                           | 67    |
| Table 21 Allocation factors for caprine leather                                                          | 67    |
| Table 22 Allocation factors for ovine leather                                                            |       |
| Table 23 Allocation rules for electricity                                                                | 70    |
| Table 24 Characterization Factors (CFs) in CO2-equivalents, with carbon feedbacks                        | 71    |
| Table 25: Default values for chromium recovery CFF                                                       | 73    |
| Table 26 Raw material acquisition and pre-processing (capitals indicate those processes expected to be   | e run |
| by the company)                                                                                          | 75    |
| Table 27 Transport (capitals indicate those processes expected to be run by the company)                 | 75    |
| Table 28 List of EF normalisation and weighting factors                                                  | 82    |
| Table 29 Weighting factors for Environmental Footprint                                                   | 84    |
| Table 30 Check-list for the PEF study                                                                    | 85    |
| Table 31 Critical review report of the PEFCR                                                             | 86    |
| Table 32 EU Leather consumption mix (Countries contribution for less than 55 million €ur have been       |       |
| excluded)                                                                                                | 111   |
| Table 33 Hide substance content per kg of raw hide / skin                                                | 114   |
| Table 34 Calculation sheet for BSC                                                                       | 116   |
| Table 35 Assumptions for the calculation of the chemical stored carbon                                   | 117   |
| Table 36 Chemicals modelling                                                                             | _120  |
| Table 37 Default LCI for slaughterhouse to be used (Data refers to 1 kg of live weight)                  | _130  |

| Table 38 Default distances to consider for transportation                                                | 130     |  |
|----------------------------------------------------------------------------------------------------------|---------|--|
| Table 39 Chromium recovery CFF                                                                           |         |  |
| Table 40 Preliminary N-proteic and hide substance quantities for input and outputs of Leather making     | g       |  |
| process                                                                                                  | 132     |  |
| Table 41 Preliminary N-proteic contents for 1 kg of raw input material                                   | 134     |  |
| Table 42 Preliminary N-proteic and hide substance % partition for the various raw materials              | 134     |  |
| Table 43 Collagen distribution wet salted hide, finished leather and solid waste (Starting material: 1 C | )00 kg  |  |
| wet salted raw hides, splitting in chrome)                                                               | 136     |  |
| Table 44 Italian Tanneries input and outputs quantities                                                  | 138     |  |
| Table 45 Calculated hide substance and N-proteic contents' quota for bovine wet salted hides input a     | and all |  |
| process outputs                                                                                          | 139     |  |

# List of figures

# Acronyms

| ABS     | Alkyl Benzene Sulfonate                                                                            |  |  |  |  |  |
|---------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| ADEME   | Agence de l'Environnement et de la Maîtrise de l'Energie                                           |  |  |  |  |  |
| AF      | Allocation Factor                                                                                  |  |  |  |  |  |
| AICC    | Associazione Italiana Chimici del Cuoio                                                            |  |  |  |  |  |
| APIC    | Associação Portuguesa dos Industriais de Curtumes                                                  |  |  |  |  |  |
| APPBR   | Asociatia Producatorilor de Piele si Blana din Romana                                              |  |  |  |  |  |
| AR      | Allocation Ratio                                                                                   |  |  |  |  |  |
| ASTM    | American Society for Testing and Materials International                                           |  |  |  |  |  |
| B2B     | Business to Business                                                                               |  |  |  |  |  |
| B2C     | Business to Consumer                                                                               |  |  |  |  |  |
| BAT     | Best Available Techniques                                                                          |  |  |  |  |  |
| BLC     | Former British Leather Confederation, currently BLC Leather Technology Centre Ltd.                 |  |  |  |  |  |
| BoC     | Bill of Components                                                                                 |  |  |  |  |  |
| ВоМ     | Bill of Materials                                                                                  |  |  |  |  |  |
| BP      | Bonne Practique                                                                                    |  |  |  |  |  |
| BREF    | Best Available Techniques (BAT) Reference documents                                                |  |  |  |  |  |
| BSC     | Biogenic Stored Carbon                                                                             |  |  |  |  |  |
| BSI     | British Standards Institution                                                                      |  |  |  |  |  |
| BULFFHI | Branch Union of Leather, Furriers, Footwear and Haberdashery Industries                            |  |  |  |  |  |
| CAS     | Chemical Abstracts Service                                                                         |  |  |  |  |  |
| CEN     | European Committee for Standardization                                                             |  |  |  |  |  |
| CEN TS  | Technical Specifications                                                                           |  |  |  |  |  |
| CF      | Characterisation Factor                                                                            |  |  |  |  |  |
| CFCs    | Chlorofluorocarbons                                                                                |  |  |  |  |  |
| CFF     | Circular Footprint Formula                                                                         |  |  |  |  |  |
| CFF-M   | Circular Footprint Formula – Modular form                                                          |  |  |  |  |  |
| CIV     | Centre d'Information des Viandes                                                                   |  |  |  |  |  |
| CMWG    | Cattle Model Working Group                                                                         |  |  |  |  |  |
| COD     | Chemical Oxygen Demand                                                                             |  |  |  |  |  |
| COTANCE | Confédération des Associations Nationales de Tanneurs et Mégissiers de la Communauté<br>Européenne |  |  |  |  |  |
| СРА     | Classification of Products Activity                                                                |  |  |  |  |  |
| CSV     | Comma-Separated Values                                                                             |  |  |  |  |  |
| СТС     | Technical Centre of Footwear and Leather                                                           |  |  |  |  |  |
| CuPc    | Copper Phthalocyanine                                                                              |  |  |  |  |  |
| CWA     | Clean Water Act                                                                                    |  |  |  |  |  |
| DC      | Distribution Centre                                                                                |  |  |  |  |  |
| DDS     | Dihydroxydiphenyl-sulfone                                                                          |  |  |  |  |  |
| DG      | Directorate-General                                                                                |  |  |  |  |  |
| DIN     | Deutsches Institut für Normung                                                                     |  |  |  |  |  |
| DMI     | Dry Matter Intake                                                                                  |  |  |  |  |  |
|         |                                                                                                    |  |  |  |  |  |

|            | Data Naada Matrix                                                           |  |  |  |  |
|------------|-----------------------------------------------------------------------------|--|--|--|--|
| DNM        | Data Needs Matrix                                                           |  |  |  |  |
| DQA        | Data Quality Assessment<br>Data Quality Rating                              |  |  |  |  |
| DQR        |                                                                             |  |  |  |  |
| DTI        | Danish Technological Institute<br>Declared unit                             |  |  |  |  |
| DU<br>EDTA |                                                                             |  |  |  |  |
| EDTA       | Ethylenediaminetetraacetic Acid<br>Economic Allocation                      |  |  |  |  |
| EC         |                                                                             |  |  |  |  |
| EF         | European Commission<br>Environmental Footprint                              |  |  |  |  |
| EF         | Environmental Impact                                                        |  |  |  |  |
| EIA        | Environmental Impact Assessment                                             |  |  |  |  |
| ELCD       | European Reference Life Cycle Database                                      |  |  |  |  |
| EMAS       | Eco-Management and Audit Schemes                                            |  |  |  |  |
| EMS        | Environmental Management Schemes                                            |  |  |  |  |
| EN         | European standards                                                          |  |  |  |  |
| ENV        | Environment                                                                 |  |  |  |  |
| EoL        | End-of-Life                                                                 |  |  |  |  |
| EPA        | Environmental Protection Agency                                             |  |  |  |  |
| EPD        | Environmental Product Declaration                                           |  |  |  |  |
| ETP        | Effluent Treatment Plant                                                    |  |  |  |  |
| EU         | European Union                                                              |  |  |  |  |
| EWC        | European Waste Catalogue                                                    |  |  |  |  |
| FAOSTAT    | Food and Agriculture Organization of the United Nations Statistics division |  |  |  |  |
| FFTM       | Fédération Française de la Tannerie-Mégisserie                              |  |  |  |  |
| FLIA       | Finnish Leather Industry Association                                        |  |  |  |  |
| FNL        | Federatie van Nederlandse Lederfabrikanten                                  |  |  |  |  |
| FoC        | Free of Chrome                                                              |  |  |  |  |
| GE         | Gross Energy Intake                                                         |  |  |  |  |
| GHG        | Greenhouse Gas                                                              |  |  |  |  |
| GLO        | Global                                                                      |  |  |  |  |
| GR         | Geographical Representativeness                                             |  |  |  |  |
| GRI        | Global Reporting Initiative                                                 |  |  |  |  |
| GWP        | Global Warming Potential                                                    |  |  |  |  |
| HD         | Helpdesk                                                                    |  |  |  |  |
| HFC        | Hydrofluorocarbons                                                          |  |  |  |  |
| нн         | Human Health                                                                |  |  |  |  |
| ICLT       | Institute for Creative Leather Technologies                                 |  |  |  |  |
| ICT        | International Council of Tanners                                            |  |  |  |  |
| ID         | Identifier                                                                  |  |  |  |  |
| IDF        | International Dairy Federation                                              |  |  |  |  |
| IES        | Institute for Environment and Sustainability                                |  |  |  |  |
| ILCD       | International Reference Life Cycle Data System                              |  |  |  |  |
| INRA       | Institut National de la Recherche Agronomique                               |  |  |  |  |

| IPCC       | Intergovernmental Panel on Climate Change                                                                                                   |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| IPPC       | Integrated Pollution Prevention and Control                                                                                                 |  |  |  |  |
| ISBN       | International Standard Book Number                                                                                                          |  |  |  |  |
| ISIC       | International Standard Industrial Classification                                                                                            |  |  |  |  |
| ISO        | International Organization for Standardization                                                                                              |  |  |  |  |
| IUCN       | International Organization for Standardization<br>International Union for Conservation of Nature and Natural Resources                      |  |  |  |  |
| IULTCS     | International Union for Conservation of Nature and Natural Resources<br>International Union of Leather Technologists and Chemists Societies |  |  |  |  |
| IULTCS/IUC | International Union of Leather Technologists and Chemists Societies<br>Chemical Test Methods Commission                                     |  |  |  |  |
| IULTCS/IUE |                                                                                                                                             |  |  |  |  |
| JALCA      | Journal of American Leather Chemists Association                                                                                            |  |  |  |  |
| JRC        | Joint Research Centre                                                                                                                       |  |  |  |  |
| JSLTC      | Journal of Society of Leather Technologists and Chemists                                                                                    |  |  |  |  |
| LCA        | Life Cycle Assessment                                                                                                                       |  |  |  |  |
| LCDN       | Life Cycle Data Network                                                                                                                     |  |  |  |  |
| LCI        | Life Cycle Inventory                                                                                                                        |  |  |  |  |
| LCIA       | Life Cycle Impact Assessment                                                                                                                |  |  |  |  |
| LCT        | Life Cycle Thinking                                                                                                                         |  |  |  |  |
| LT         | Lifetime                                                                                                                                    |  |  |  |  |
| LU         | Land Use                                                                                                                                    |  |  |  |  |
| LW         | Live-Weight                                                                                                                                 |  |  |  |  |
| NACE       | Nomenclature Générale des Activités Economiques dans les Communautés Européennes                                                            |  |  |  |  |
| NDA        | Non Disclosure Agreement                                                                                                                    |  |  |  |  |
| NGO        | Non-Governmental Organization                                                                                                               |  |  |  |  |
| NL         | Netherlands                                                                                                                                 |  |  |  |  |
| NMVOC      | Non-Methane Volatile Organic Compound                                                                                                       |  |  |  |  |
| NPK        | Nitrogen-Phosphorus-Potassium                                                                                                               |  |  |  |  |
| NZ         | New Zealand                                                                                                                                 |  |  |  |  |
| OEF        | Organisation Environmental Footprint                                                                                                        |  |  |  |  |
| ΟΙΤ        | 2-Octyl-2H-isothiazol-3-one                                                                                                                 |  |  |  |  |
| OPP        | Ortho-Phenylphenol and Sodium                                                                                                               |  |  |  |  |
| Р          | Precision                                                                                                                                   |  |  |  |  |
| PAS        | Public Available Specification                                                                                                              |  |  |  |  |
| PERC       | Perchloroethylene                                                                                                                           |  |  |  |  |
| PCMS       | Polycarbamoyl Sulfonate                                                                                                                     |  |  |  |  |
| PCR        | Product Category Rule                                                                                                                       |  |  |  |  |
| PEF        | Product Environmental Footprint                                                                                                             |  |  |  |  |
| PEFCR      | Product Environmental Footprint Category Rule                                                                                               |  |  |  |  |
| PI         | Province of Pisa                                                                                                                            |  |  |  |  |
| QR         | Quick Response                                                                                                                              |  |  |  |  |
| RER        | Rest of Europe                                                                                                                              |  |  |  |  |
| RF         | Reference Flow                                                                                                                              |  |  |  |  |
| RP         | Representative Product                                                                                                                      |  |  |  |  |
| SA         | Sociedad Anónima                                                                                                                            |  |  |  |  |
|            |                                                                                                                                             |  |  |  |  |

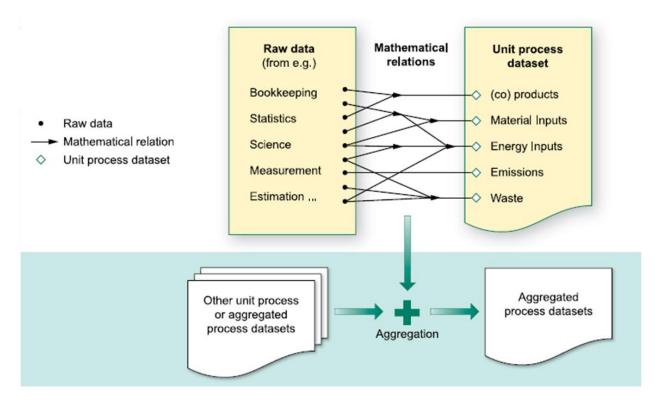
| SB       | System Boundary                                                             |  |  |  |  |
|----------|-----------------------------------------------------------------------------|--|--|--|--|
| SC       | Steering Committee                                                          |  |  |  |  |
| SCC      | Stored Carbon from Chemicals                                                |  |  |  |  |
| SDDC     | Sodium Dimethyldithiocarbamate                                              |  |  |  |  |
| SDS-PAGE | GE Sodium Dodecyl Sulphate - PolyAcrylamide Gel Electrophoresis             |  |  |  |  |
| SG       | Svenska Garveriidkareforeningen                                             |  |  |  |  |
| SLG      | Scottish Leather Group Ltd.                                                 |  |  |  |  |
| SMRS     | Sustainability Measurement & Reporting System                               |  |  |  |  |
| SS       | Supporting Study                                                            |  |  |  |  |
| SSIP     | Stazione Sperimentale per l'Industria delle Pelli e delle Materie Concianti |  |  |  |  |
| ТАВ      | Technical Advisory Board                                                    |  |  |  |  |
| тсмтв    | (Benzothiazol-2-ylthio)methylthiocyanat                                     |  |  |  |  |
| TeR      | Technological Representativeness                                            |  |  |  |  |
| TiR      | Time Representativeness                                                     |  |  |  |  |
| ΤΚΝ      | Total Kjedahl Nitrogen                                                      |  |  |  |  |
| TS       | Technical Secretariat                                                       |  |  |  |  |
| UKLF     | United Kingdom Leather Federation                                           |  |  |  |  |
| UNE      | Spanish Standard                                                            |  |  |  |  |
| UNI      | Ente Nazionale Italiano di Unificazione                                     |  |  |  |  |
| UNI/TS   | Specifica Tecnica                                                           |  |  |  |  |
| UNIC     | Unione Nazionale Industria Conciaria                                        |  |  |  |  |
| UNIDO    | United Nations Industrial Development Organization                          |  |  |  |  |
| UNITAN   | Union de la Tannerie et de la Mégisserie Belge                              |  |  |  |  |
| UNPAC    | Unione Nazionale Produttori Italiani Ausiliari Conciari                     |  |  |  |  |
| UPC      | Universitat Politècnica de Catalunya                                        |  |  |  |  |
| USA      | United States of America                                                    |  |  |  |  |
| UUID     | Universally Unique Identifier                                               |  |  |  |  |
| VDL      | Verband der Deutschen Lederindustrie e.V                                    |  |  |  |  |
| VOC      | C Volatile Organic Compounds                                                |  |  |  |  |
| WRI      |                                                                             |  |  |  |  |
| WBCSD    | World Business Council for Sustainable Development                          |  |  |  |  |

# Definitions

Activity data - This term refers to information which is associated with processes while modelling Life Cycle Inventories (LCI). In the PEF Guide it is also called "non-elementary flows". The aggregated LCI results of the process chains that represent the activities of a process are each multiplied by the corresponding activity data<sup>1</sup> and then combined to derive the environmental footprint associated with that process (See Figure 1). Examples of activity data include quantity of kilowatt-hours of electricity used, quantity of fuel used, output of a process (e.g. waste), number of hours equipment is operated, distance travelled, floor area of a building, etc. In the context of PEF the amounts of ingredients from the bill of material (BOM) shall always be considered as activity data.

**Aggregated dataset** - This term is defined as a life cycle inventory of multiple unit processes (e.g. material or energy production) or life cycle stages (cradle-to-gate), but for which the inputs and outputs are provided only at the aggregated level. Aggregated datasets are also called "LCI results", "cumulative inventory" or "system processes" datasets. The aggregated dataset can have been aggregated horizontally and/or vertically. Depending on the specific situation and modelling choices a "unit process" dataset can also be aggregated. See Figure 1<sup>2</sup>.

**Application specific** – It refers to the generic aspect of the specific application in which a material is used. For example, the average recycling rate of PET in bottles.


**Benchmark** – A standard or point of reference against which any comparison can be made. In the context of PEF, the term 'benchmark' refers to the *average* environmental performance of the representative product sold in the EU market. A benchmark may eventually be used, if appropriate, in the context of communicating environmental performance of a product belonging to the same category.

**Bill of materials** – A bill of materials or product structure (sometimes bill of material, BOM or associated list) is a list of the raw materials, sub-assemblies, intermediate assemblies, sub-components, parts and the quantities of each needed to manufacture an end product.

<sup>&</sup>lt;sup>1</sup> Based on GHG protocol scope 3 definition from the Corporate Accounting and Reporting Standard (World resources institute, 2011).

<sup>&</sup>lt;sup>2</sup> Source: UN Environment /SETAC "Global Guidance Principles for LCA Databases"

Figure 1 Definition of a unit process dataset and an aggregated process dataset



**Business to Business (B2B)** – Describes transactions between businesses, such as between a manufacturer and a wholesaler, or between a wholesaler and a retailer.

**Business to Consumers (B2C)** – Describes transactions between business and consumers, such as between retailers and consumers. According to ISO 14025:2006, a consumer is defined as "an individual member of the general public purchasing or using goods, property or services for private purposes".

**By-Product**<sup>3</sup> – Output other than the principal product(s) of an industrial process, such as sawdust or woodchips generated in processing lumber. Unlike joint-products, byproducts have low value in comparison with the principal product(s) and may be discarded or sold either in their original state, or after further processing.

**Commissioner of the EF study** - Organisation (or group of organisations) that finances the EF study in accordance with the PEF Guide, PEFCR Guidance and the relevant PEFCR, if available (definition adapted from ISO 14071/2014, point 3.4).

**Company-specific data** – It refers to directly measured or collected data from one or multiple facilities (site-specific data) that are representative for the activities of the company. It is synonymous to "primary data". To determine the level of representativeness a sampling procedure can be applied.

<sup>&</sup>lt;sup>3</sup> <u>http://www.businessdictionary.com/definition/byproduct.html</u>

**Comparative assertion** – An environmental claim regarding the superiority or equivalence of one product versus a competing product that performs the same function (adapted from ISO 14025:2006).

**Comparison** – A comparison, not including a comparative assertion, (graphic or otherwise) of two or more products based on the results of a PEF study and supporting PEFCRs or the comparison of one or more products against the benchmark, based on the results of a PEF study and supporting PEFCRs.

**Co-Product**<sup>4</sup>– Product manufactured along with a different product, in a process in which both are required in the production of another product. In comparison, a by-product is usually an undesirable product.

**Data Quality Rating (DQR)** - Semi-quantitative assessment of the quality criteria of a dataset based on Technological representativeness, Geographical representativeness, Time-related representativeness, and Precision. The data quality shall be considered as the quality of the dataset as documented.

**Direct elementary flows** (also named elementary flows) – All output emissions and input resource use that arise directly in the context of a process. Examples are emissions from a chemical process, or fugitive emissions from a boiler directly onsite. See Figure 2.

**Disaggregation** – The process that breaks down an aggregated dataset into smaller unit process datasets (horizontal or vertical). The disaggregation can help making data more specific. The process of disaggregation should never compromise or threat to compromise the quality and consistency of the original aggregated dataset

**Edible** - Products which are covered by EU food legislation and comply with all relevant regulatory requirements for being placed on the market as suitable or fit for human consumption, notably with regard to the corresponding sanitary certification.

**EF communication vehicles** – It includes all the possible ways that can be used to communicate the results of the EF study to the stakeholders. The list of EF communication vehicles includes, but it is not limited to, labels, environmental product declarations, green claims, websites, infographics, etc.

**EF report** – Document that summarises the results of the EF study. For the EF report the template provided as annex to the PECFR Guidance shall be used. In case the commissioner of the EF study decides to communicate the results of the EF study (independently from the communication vehicle used), the EF report shall be made available for free through the commissioner's website. The EF report shall not contain any information that is considered as confidential by the commissioner, however the confidential information shall be provided to the verifier(s).

**EF study** – Term used to identify the totality of actions needed to calculate the EF results. It includes the modelisation, the data collection, and the analysis of the results.

**Electricity tracking**<sup>5</sup> – Electricity tracking is the process of assigning electricity generation attributes to electricity consumption.

<sup>&</sup>lt;sup>4</sup> <u>http://www.businessdictionary.com/definition/coproduct.html</u>

<sup>&</sup>lt;sup>5</sup> <u>https://ec.europa.eu/energy/intelligent/projects/en/projects/e-track-ii</u>

**Elementary flow** - Material or energy entering the system being studied that has been drawn from the environment without previous human transformation, or material or energy leaving the system being studied that is released into the environment without subsequent human transformation.

**Environmental aspect** – Element of an organization's activities or products or services that interacts or can interact with the environment (ISO 14001:2015)

**External Communication** – Communication to any interested party other than the commissioner or the practitioner of the study.

**Foreground elementary flows** - Direct elementary flows (emissions and resources) for which access to primary data (or company-specific information) is available.

Grain - The surface of a hide or skin exposed by removal of the hair or wool and epidermis.

Hide - The outer covering of a mature, or fully grown, animal of the larger kind.

**Independent external expert** – Competent person, not employed in a full-time or part-time role by the commissioner of the EF study or the practitioner of the EF study, and not involved in defining the scope or conducting the EF study (adapted from ISO 14071/2014, point 3.2).

**Input flows** – Product, material or energy flow that enters a unit process. Products and materials include raw materials, intermediate products and co-products (ISO 14040:2006).

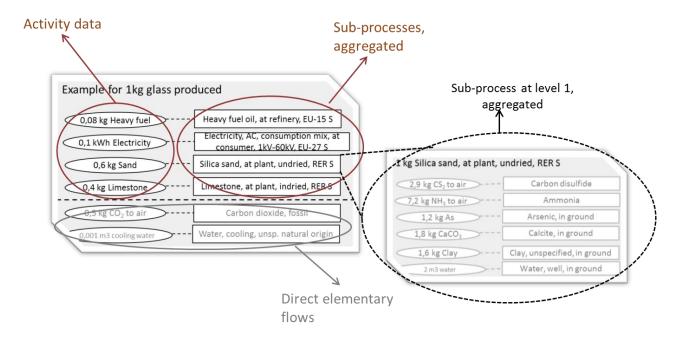
**Intermediate product** - An intermediate product is a product that requires further processing before it is saleable to the final consumer.

**Lead verifier** – Verifier taking part in a verification team with additional responsibilities compared to the other verifiers in the team.

**Leather** - hide or skin with its original fibrous structure more or less intact, tanned to be imputrescible, where the hair or wool may or may not have been removed, whether or not the hide or skin has been split into layers or segmented either before or after tanning and where any surface coating or surface layer, however applied, is not thicker than 0.15 mm.

Life Cycle Inventory (LCI) - The combined set of exchanges of elementary, waste and product flows in a LCI dataset.

**Life Cycle Inventory (LCI) dataset** - A document or file with life cycle information of a specified product or other reference (e.g., site, process), covering descriptive metadata and quantitative life cycle inventory. A LCI dataset could be a unit process dataset, partially aggregated or an aggregated dataset.


Material-specific – It refers to a generic aspect of a material. For example, the recycling rate of PET.

https://ec.europa.eu/energy/intelligent/projects/en/projects/e-track-ii

**Output flows** – Product, material or energy flow that leaves a unit process. Products and materials include raw materials, intermediate products, co-products and releases (ISO 14040:2006).

**Partially disaggregated dataset** - A dataset with a LCI that contains elementary flows and activity data, and that only in combination with its complementing underlying datasets yield a complete aggregated LCI data set. We refer to a partially disaggregated dataset at level 1 in case the LCI contains elementary flows and activity data, while all complementing underlying dataset are in their aggregated form (see an example in Figure 2).

Figure 2 An example of a partially aggregated dataset, at level 1. The activity data and direct elementary flows are to the left, and the complementing sub-processes in their aggregated form are to the right. The grey text indicates elementary flows



**PEFCR Supporting study** – The PEF study done on the basis of a draft PEFCR. It is used to confirm the decisions taken in the draft PEFCR before the final PEFCR is released.

**PEF Profile** – The quantified results of a PEF study. It includes the quantification of the impacts for the various impact categories and the additional environmental information considered necessary to be reported.

**PEF screening** – A preliminary study carried out on the representative product(s) and intended to identify the most relevant life cycle stages, processes, elementary flows, impact categories and data quality needs to derive the preliminary indication about the definition of the benchmark for the product category/subcategories in scope, and any other major requirement to be part of the final PEFCR.

**Population** - Any finite or infinite aggregation of individuals, not necessarily animate, subject to a statistical study.

**Practitioner of the EF study** – Individual, organisation or group of organisations that performs the EF study in accordance with the PEF Guide, PEFCR Guidance and the relevant PEFCR if available. The practitioner of

the EF study can belong to the same organisation as the commissioner of the EF study (adapted from ISO 14071/2014, point 3.6).

**Primary data**<sup>6</sup> - This term refers to data from specific processes within the supply-chain of the company applying the PEFCR. Such data may take the form of activity data, or foreground elementary flows (life cycle inventory). Primary data are site-specific, company-specific (if multiple sites for the same product) or supply-chain-specific. Primary data may be obtained through meter readings, purchase records, utility bills, engineering models, direct monitoring, material/product balances, stoichiometry, or other methods for obtaining data from specific processes in the value chain of the company applying the PEFCR. In this Guidance, primary data is synonym of "company-specific data" or "supply-chain specific data".

Product category – Group of products (or services) that can fulfil equivalent functions (ISO 14025:2006).

**Product Category Rules (PCR)** – Set of specific rules, requirements and guidelines for developing Type III environmental declarations for one or more product categories (ISO 14025:2006).

**Product Environmental Footprint Category Rules (PEFCRs)** – Product category-specific, life-cycle-based rules that complement general methodological guidance for PEF studies by providing further specification at the level of a specific product category. PEFCRs help to shift the focus of the PEF study towards those aspects and parameters that matter the most, and hence contribute to increased relevance, reproducibility and consistency of the results by reducing costs versus a study based on the comprehensive requirements of the PEF guide.

**Refurbishment** – It is the process of restoring components to a functional and/or satisfactory state to the original specification (providing the same function), using methods such as resurfacing, repainting, etc. Refurbished products may have been tested and verified to function properly.

**Representative product (model)** - The "representative product" may or may not be a real product that one can buy on the EU market. Especially when the market is made up of different technologies, the "representative product" can be a virtual (non-existing) product built, for example, from the average EU sales-weighted characteristics of all technologies around. A PEFCR may include more than one representative product if appropriate.

**Representative sample** – A representative sample with respect to one or more variables is a sample in which the distribution of these variables is exactly the same (or similar) as in the population from which the sample is a subset

**Sample** – A sample is a subset containing the characteristics of a larger population. Samples are used in statistical testing when population sizes are too large for the test to include all possible members or observations. A sample should represent the whole population and not reflect bias toward a specific attribute.

<sup>&</sup>lt;sup>6</sup> Based on GHG protocol scope 3 definition from the Corporate Accounting and Reporting Standard (World resources institute, 20011).

**Secondary data**<sup>7</sup> - It refers to data not from specific process within the supply-chain of the company applying the PEFCR. This refers to data that is not directly collected, measured, or estimated by the company, but sourced from a third party life-cycle-inventory database or other sources. Secondary data includes industry-average data (e.g., from published production data, government statistics, and industry associations), literature studies, engineering studies and patents, and can also be based on financial data, and contain proxy data, and other generic data. Primary data that go through a horizontal aggregation step are considered as secondary data.

**Site-specific data** – It refers to directly measured or collected data from one facility (production site). It is synonymous to "primary data".

Skin - The more or less thick, tough, flexible covering of human and other animal bodies.

Split - Leather made from the middle or under layer split from a hide or skin.

**Sub-population** – In this document this term indicates any finite or infinite aggregation of individuals, not necessarily animate, subject to a statistical study that constitutes a homogenous sub-set of the whole population. Sometimes the word "stratum" can be used as well.

**Sub-processes** - Those processes used to represent the activities of the level 1 processes (=building blocks). Sub-processes can be presented in their (partially) aggregated form (see Figure 2).

**Sub-sample -** In this document this term indicates a sample of a sub-population.

**Supply-chain** – It refers to all of the upstream and downstream activities associated with the operations of the company applying the PEFCR, including the use of sold products by consumers and the end-of-life treatment of sold products after consumer use.

**Supply-chain specific** – It refers to a specific aspect of the specific supply-chain of a company. For example the recycled content value of an aluminium can produced by a specific company.

**Type III environmental declaration** – An environmental declaration providing quantified environmental data using predetermined parameters and, where relevant, additional environmental information (ISO 14025:2006). The predetermined parameters are based on the ISO 14040 series of standards, which is made up of ISO 14040 and ISO 14044.

**Unit process dataset** - Smallest element considered in the life cycle inventory analysis for which input and output data are quantified (ISO 14040:2006). In LCA practice, both physically not further separable processes (such as unit operations in production plants, then called "unit process single operation") and also whole production sites are covered under "unit process", then called "unit process, black box" (ILCD Handbook).

**Validation statement** – Conclusive document aggregating the conclusions from the *verifiers* or the verification team regarding the EF study. This document is mandatory and shall be electronically or physically

<sup>&</sup>lt;sup>7</sup> Based on GHG protocol scope 3 definition from the Corporate Accounting and Reporting Standard (World resources institute, 20011)

signed by the *verifier or in case of a* verification panel, by the lead verifier. The minimum content of the validation statement is provided in this document.

**Verification report** – Documentation of the verification process and findings, including detailed comments from the *Verifier(s)*, as well as the corresponding responses. This document is mandatory, but it can be confidential. However, it shall be signed, electronically or physically, by the *verifier or in case of a* verification panel, by the lead verifier.

**Verification team** – Team of verifiers that will perform the verification of the EF study, of the EF report and the EF communication vehicles.

**Verifier** – Independent external expert performing a verification of the EF study and eventually taking part in a verification team.

# 1 **1. Introduction**

The Product Environmental Footprint (PEF) Guide provides detailed and comprehensive technical guidance
 on how to conduct a PEF study. PEF studies may be used for a variety of purposes, including in-house
 management and participation in voluntary or mandatory programmes.

- 5 For all requirements not specified in this PEFCR the applicant shall refer to the documents this PEFCR is in 6 conformance with (see chapter 2.7 Conformance to other documents).
- The compliance with the present PEFCR is optional for PEF in-house applications, whilst it is mandatory
  whenever the results of a PEF study or any of its content is intended to be communicated.

# 9 Terminology: shall, should and may

10 This PEFCR uses precise terminology to indicate the requirements, the recommendations and options that 11 could be chosen when a PEF study is conducted.

- The term "shall" is used to indicate what is required in order for a PEF study to be in conformance with this PEFCR.
- The term "should" is used to indicate a recommendation rather than a requirement. Any deviation
   from a "should" requirement has to be justified when developing the PEF study and made
   transparent.
- The term "may" is used to indicate an option that is permissible. Whenever options are available,
   the PEF study shall include adequate argumentation to justify the chosen option.

# 19 **2.** General information about the PEFCR

# 20 2.1 Technical secretariat

The organisations listed in Table 1 were the Technical Secretariat (TS), which is responsible for the development of the PEFCRs for the leather sector, at the time of final opinion expressed by the Environmental Footprint Steering Committee. All listed entities are members of the TS as of the start of the initiative except "Gremi de Blanquers d'Igualada" joining on the 4<sup>th</sup> of September 2015 and the Igualada Engineering School joining on the 2<sup>nd</sup> of December 2015.

| Name of the organization                                                            | Type of organization   |
|-------------------------------------------------------------------------------------|------------------------|
| APIC: Associação Portuguesa dos Industriais de Curtumes                             | Industrial association |
| APPBR: Asociatia Producatorilor de Piele si Blana din Romana                        | Industrial association |
| BULFFHI: Branch Union of Leather, Furriers, Footwear and Haberdashery<br>Industries | Industrial association |

### 26 Table 1 List of the organizations in the TS

| Name of the organization                                                          | Type of      |
|-----------------------------------------------------------------------------------|--------------|
|                                                                                   | organization |
| COTANCE: Confédération des Associations Nationales de la Communauté               | Industrial   |
| Européenne                                                                        | association  |
| FFTM: Fédération Française de la Tannerie-Mégisserie                              | Industrial   |
|                                                                                   | association  |
| FLIA: Finnish Leather Industry Association                                        | Industrial   |
|                                                                                   | association  |
| FNL: Federatie van Nederlandse Lederfabrikanten                                   | Industrial   |
|                                                                                   | association  |
| Gremi de Blanquers d'Igualada                                                     | Industrial   |
|                                                                                   | association  |
| ICT: International Council of Tanners                                             | Industrial   |
|                                                                                   | association  |
| Igualada Engineering School, UPC: Universitat Politècnica de Catalunya            | Academia     |
| IKEA                                                                              | Industry     |
| IULTCS / IUE: International Union of Leather Technologists and Chemists Societies | Industrial   |
| / Environment Commission                                                          | association  |
| Pittards Plc.                                                                     | Industry     |
| SG: Svenska Garveriidkareforeningen                                               | Industrial   |
|                                                                                   | association  |
| SLG: Scottish Leather Group Ltd.                                                  | Industry     |
| Spin 360                                                                          | Consultant   |
| Stahl                                                                             | Industry     |
| UKLF: UK Leather Federation                                                       | Industrial   |
|                                                                                   | association  |
| UNIC: Unione Nazionale Industria Conciaria                                        | Industrial   |
|                                                                                   | association  |
| UNITAN: Union de la Tannerie et de la Mégisserie Belge                            | Industrial   |
|                                                                                   | association  |
| University of Northampton, ICLT: Institute for Creative Leather Technologies      | Academia     |
| University of Pisa, Department of Civil & Industrial Engineering                  | Academia     |
| VDL: Verband der Deutschen Lederindustrie e.V.                                    | Industrial   |
|                                                                                   | association  |
| World Leather, World Trades Publishing Ltd.                                       | Publishing   |
| שטוות בכמנווכו, שטוות וומעכז רמטווזוווא בנט.                                      | company      |

# 27 2.2 Consultations and stakeholders<sup>8</sup>

28 During the pilot phase were held three public consultation during which comments were collected through

29 the dedicated template and were then addressed and eventually implemented in the new draft of the

30 Product Environmental Footprint Category Rules (PEFCR).

<sup>&</sup>lt;sup>8</sup> A web page is available to see the evolution of leather PEFCR: <u>https://webgate.ec.europa.eu/fpfis/wikis/display/EUENVFP/PEFCR+Pilot%3A+Leather</u>

### 31 Table 2 Information on public consultations

| Public<br>consultation<br># | Opening<br>date        | Closing<br>date         | Comments<br>received | Organisations providing comments                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------|------------------------|-------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                           | 12 January<br>2015     | 12<br>February<br>2015  | 16                   | Aequilibria, EPD International AB (programme<br>operator of the International EPD System),<br>GME (Gelatine Manufacturers of Europe)                                                                                                                                                                                                                                              |
| 2                           | 11<br>November<br>2015 | 9<br>December<br>2015   | 35                   | Associazione Conciatori Santa Croce sull'Arno,<br>Consorzio conciatori Ponte a Egola and Polo<br>Tecnologico Conciario on behalf of the pilot<br>group of the fashion cluster in Tuscany region,<br>constituted during the Life + PREFER project,<br>HUGO BOSS, I-T-G GmbH on behalf of the VDL,<br>thinkstep AG, UPC-Igualada and Igualada<br>Leather Cluster Barcelona Igualada |
| 3                           | 1 August<br>2016       | 16<br>September<br>2016 | 158                  | 20 LCA consultants, European Commission<br>(EC), ENEA also on behalf of the Italian<br>Ministry of Environment, Fédération Française<br>Tannerie Mégisserie - Paris – France, Institute<br>For Industrial Technologies And Automation –<br>Italy, Kering, Silvateam Spa, Spin 360, Stahl,<br>UK Leather Federation                                                                |

# 32 2.3 Review panel and review requirements of the PEFCR

The review panel was composed as depicted in Table 3. The first review was performed before the remodelling phase and the final one took place at the end of the pilot phase.

# 35 Table 3 Members of the review panel

| Name of the member                | Affiliation                                                                               | Role                                                       |
|-----------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Ugo Pretato                       | Studio Fieschi & soci Srl                                                                 | Review panel Chair / Life Cycle<br>Assessment (LCA) expert |
| Carlo Brondi <sup>9</sup>         | Consiglio Nazionale delle Ricerche (CNR)                                                  | Life Cycle Assessment (LCA) expert                         |
| Gianluigi<br>Calvanese            | Stazione Sperimentale per l'Industria delle Pelli<br>e delle Materie Concianti Srl (SSIP) | Industry expert                                            |
| Antonino<br>Morabito <sup>9</sup> | LEGAMBIENTE Onlus - Direzione Nazionale                                                   | Non-Governmental Organization (NGO) representative         |

36 The reviewers have verified that the following requirements have been fulfilled:

The PEFCR has been developed in accordance with the requirement provided in the PEFCR
 Guidance version 6.3, and where appropriate in accordance with the requirements provided in the

<sup>&</sup>lt;sup>9</sup> Mr. Morabito contributed to the first review only and was substituted by Mr. Brondi for the final one.

- most recent approved version of the PEF Guide, and supports creation of credible and consistent
   PEF profiles,
- The declared unit, allocation and calculation rules are adequate for the product category under
   consideration,
- Company-specific and secondary datasets used to develop this PEFCR are relevant, representative,
   and reliable,
- The selected LCIA indicators and additional environmental information are appropriate for the
   product category under consideration and the selection is done in accordance with the guidelines
   stated in the PEFCR Guidance version 6.3 and the most recent approved version of the PEF Guide,
- 48 The benchmark(s) is(are) correctly defined, and
- Both LCA-based data and the additional environmental information prescribed by the PEFCR give a
   description of the significant environmental aspects associated with the product.
- 51 The detailed review report is provided in ANNEX 3 Critical review report of the PEFCR of this PEFCR.

# 52 **2.4 Review statement**

This PEFCR has been developed in compliance with Version 6.3 of the PEFCR Guidance, and with the PEF Guide adopted by the Commission on 9 April 2013.

The representative product(s) correctly describes the average product(s) sold in Europe for the product group in scope of this PEFCR.

57 PEF studies carried out in compliance with this PEFCR would reasonably lead to reproducible results, but the 58 information included therein may not be used to make comparisons, unless the complete product life cycle 59 is included in the system boundaries and a consistent declared unit is defined (see chapter 2.6 Limitations)

is included in the system boundaries and a consistent declared unit is defined (see chapter 3.6 Limitations).

Furthermore PEF studies provide the basis to systematize environmental knowledge in the foreground
 sectors (e.g. fashion sector). PEF review has been intended to provide transparency and clearness to PEF
 studies in order to be modularly implemented within other sectoral PEF.

The panel members confirm that they have sufficient knowledge and experience of the industrial sector involved and of the relevant methods and guidance to carry out this review and that they have performed the review tasks at the best of their capacity.

66 The panel members confirm that they have been independent in their role as reviewers, they have not been 67 involved in the development of the PEFCR and they do not have conflicts of interest regarding this review.

# 68 2.5 Geographic validity

- 69 This PEFCR is valid for products in scope sold/consumed in the European Union + EFTA.
- 70 Each PEF study shall identify its geographical validity listing all the countries where the product object of the
- 71 PEF study is consumed/sold with the relative market share. In case the information on the market for the

- 72 specific product object of the study is not available, Europe +EFTA shall be considered as the default market,
- 73 with an equal market share for each country.

#### 74 2.6 Language

75 The PEFCR is written in English. The original in English supersedes translated versions in case of conflicts.

#### 76 2.7 Conformance to other documents

- 77 This PEFCR has been prepared in conformance with the following documents (in prevailing order):
- 78 PEFCR Guidance 6.3; •
- 79 Product Environmental Footprint (PEF) Guide; Annex II to the Recommendation 2013/179/EU, 9 April 80 2013. Published in the official journal of the European Union Volume 56, 4 May 2013.

#### 3. PEFCR scope 81

82 These PEFCR cover leathers meeting the following definition:

83 "Finished leathers produced from raw hides and skins of bovine, ovine and caprine animals, which have been

84 raised mainly for the production of milk, meat or wool, and slaughtered mainly for human consumption

- 85 purposes, notably meat production."
- 86 Are excluded from the present PEFCR all leathers produced from hides or skins of animals other than those 87
- slaughtered for human consumption, as well as any synthetic substitute material to leather.

88 Therefore, the product categories included in this work apply to finished leathers manufactured from adult

89 bovine hides, calf, ovine and caprine skins. These are the predominant industrial products of tanneries,

90 representing more than 99% of global finished leather production (source ICT). Downstream end users

91 (leather articles manufacturers) buy leather as an external input processing material. The related Statistical

- 92 Classification of Products by Activity (CPA) codes for these product categories are reported in Table 4.
- 3.1 Product classification 93
- 94 The CPA codes for the products included in this PEFCR are:
- 95 Table 4 Classification of Products by Activity (CPA) for the products included in this PEFCR

| С       | MANUFACTURED PRODUCTS                                                                     |
|---------|-------------------------------------------------------------------------------------------|
| 15      | Leather and related products                                                              |
| 15.1    | Tanned and dressed leather; luggage, handbags, saddlery and harness; dressed and dyed fur |
| 15.11.3 | Leather, of bovine or equine animals, without hair                                        |
| 15.11.4 | Leather of sheep, goat or swine, without hair                                             |

Leather is the result of activities performed that are classified in the Statistical Classification of Economic 96

97 Activities in the European Community (NACE) Rev.2 under code 15.11 Tanning and dressing of leather; dressing and dyeing of fur, corresponding to International Standard Industrial Classification (ISIC) Rev.4 tocode 1511.

# 100 **3.2 Representative product(s)**

- 101 The RPs are virtual products defined on the basis of European market share of the different kind of leather.
- 102 The following four RPs, one for each of the main application and uses of finished leather, have been 103 identified:
- 104 RP1. Leather for automotive interiors and furniture upholstery;
- 105 RP2. Leather for upper footwear and leather goods (e.g. bags, belts, wallets, ...);
- 106 RP3. Leather for garment and gloves;
- 107 RP4. Sole leather.
- 108 Each RP cover all animal origins and technologies variants for the specific end use.
- 109 The characteristics of the RPs, in terms of tanning technologies and animal origins, are reported in ANNEX 5
- 110 Representative Products. We present below the summary table of the RPs.

# 111 Table 5 Representative Products

| RP<br>ID | End use                    | Chrome-<br>Tanned | Vegetable-<br>Tanned | Free of<br>Chrome (FoC) | Animal Origin <sup>10</sup>                             |
|----------|----------------------------|-------------------|----------------------|-------------------------|---------------------------------------------------------|
| RP1      | Automotive and upholstery  | 63%               | 0%                   | 37%                     | Bovine (100%)                                           |
| RP2      | Footwear and leather goods | 75%               | 22%                  | 3%                      | Bovine (66%), Calf (12%),<br>Caprine (11%), Ovine (11%) |
| RP3      | Garments and<br>Gloves     | 100%              | 0%                   | 0%                      | Calf (20%), Caprine (16%),<br>Ovine (64%)               |
| RP4      | Sole leather               | 0%                | 100%11               | 0%                      | Bovine (100%)                                           |

112 The screening study is available upon request to the TS coordinator that has the responsibility of distributing 113 it with an adequate disclaimer about its limitations.

# 114 **3.3 Declared unit and reference flow**

- The Declared Unit (DU) is a square meter (m<sup>2</sup>) of finished leather, measured according to ISO 11646 standard
   or EN ISO 19076.
- 117 For finished sole leather, which is routinely measured and sold by weight (kg), an appropriate conversion
- 118 factor from weight of finished product to surface area of finished product (kg/m<sup>2</sup>) shall be used. The
- 119 conversion factor shall be calculated based on tannery primary data, considering that the thickness of sole
- 120 leather significantly influences the weight per surface unit. If a conversion factor to transform kg of sole

<sup>&</sup>lt;sup>10</sup> The percentages are taken from "UNIC Annual Report 2013" for the Italian production.

<sup>&</sup>lt;sup>11</sup> Full vegetable tanning

- 121 leather into m<sup>2</sup> of sole leather is not available as primary data from the tannery, a default value of 4.63 kg/m<sup>2</sup>
- shall be used (average value that cover all ranges of thickness). The default values have been established in
- an open consultation process with the producers of sole leathers producing more than 80% of the sole
- 124 European leather tested in the screening phase. The use of the default value shall be justified and be subject
- to strict review by the verifier, since it greatly influence the results of the study.
- 126 Table 6 defines the key aspects used to define the DU.

# **127** Table 6 Key aspects of the DU

| What?        | Leather as defined by EN15897:2014: "hide or skin with its original fibrous structure more or less intact, tanned to be imputrescible, where the hair or wool may or may not have been removed, whether or not the hide or skin has been split into layers or segmented either before or after tanning and where any surface coating or surface layer, however applied, is not thicker than 0.15 mm".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How<br>much? | 1 square metre of finished leathers, as routinely measured at Tannery<br>The following standards define fitness for use:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| How<br>well? | <ul> <li>EN 13336:2012, Leather - Upholstery leather characteristics - Guide for selection of leather for furniture</li> <li>EN 16223:2012, Leather - Requirements for the designation and description of leather in upholstery and automotive interior applications</li> <li>EN 16419:2014, Leather - Chamois leather for cleaning purposes - Classification and requirements</li> <li>EN ISO 14931:2015, Leather - Guide to the selection of leather for apparel (excluding furs)</li> <li>ISO 14930:2012, Leather - Leather for dress gloves – Specification</li> <li>ISO 16131:2013, Leather - Upholstery leather characteristics - Selection of leather for furniture</li> <li>ISO 5431:2013, Leather - Wet blue goat skins - Specification</li> <li>ISO 5432:2013, Leather - Wet blue sheep skins – Specification</li> <li>ISO 5432:2013, Leather - Features of leathers for the footwear industry</li> <li>UNI 10594:2010, Leather - Features of leathers for the footwear industry</li> <li>UNI 10826:2012, Leather - Features of leathers intended for leather goods and accessories industry</li> <li>UNI 10885:2012, Vegetable tanned leather - definition, characteristics and requirements</li> <li>UNI 10886:2000, Characteristics and requirements of leather used for the manufacture of gloves</li> <li>UNI/TS 11268:2008, Leather - Characteristics and requirements for leather upholstery UNI/TS 11268 (Saddlery Leather)</li> <li>ISO 16131:2912 &amp; UNI EN 13336:2012, Upholstery Leathers</li> <li>CEN TS 14906:2005, Automotive Leathers</li> <li>EN ISO 14931:2013, Apparel leather - excluding Furs</li> <li>UNI 10885:2012, Vegetable Tanned Leathers</li> </ul> |

|       | It is necessary to declare which standard is followed and the related level of compliance. The  |
|-------|-------------------------------------------------------------------------------------------------|
|       | animal origin shall be reported.                                                                |
| How   | Leather is an intermediate product and has no expiry date. Its life span depends from its final |
|       | use but considering that use phase is beyond the system boundaries of these PEFCR, "how         |
| long? | long?" specification cannot be defined.                                                         |

128 The reference flow is the amount of product needed to fulfil the defined function and shall be measured in

- kg of raw hide or skin/m<sup>2</sup>. All quantitative input and output data collected in the study shall be calculated in relation to this reference flow.
- relation to this reference flow.
- Declared units of different leather products shall not be compared, unless additional specifications thatensure comparability are set.

133 Leather is an intermediate product elaborated to customers' specifications that define the intended

application and therefore the function it fulfils. However, whether a leather is actually used for the intended

135 function can only be fully established in a cradle to grave approach where the use and EoL stages are

- 136 identified.
- 137 When reporting the results, the final use of leather, the animal origin and the percentages of the different
- 138 ranges of thickness that constitute the finished leather shall be reported.
- 139 The company shall declare also the kg of finished leather per m<sup>2</sup> for the specific product.
- 140 Unless specific conversion factors from weight of raw hides and skins to surface of finished leather are
- 141 available, the ones reported in Table 7 shall be used. The conversion factors provided are average for each
- 142 kind of animals and do not differentiate for different provenience or different species.

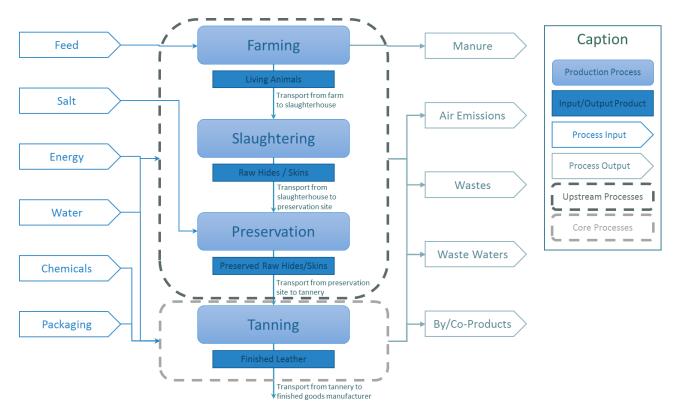
### 143 Table 7 Reference flows per Representative Product

| Final Use                               | Animal origin, mix | Kg raw hides or skins / m <sup>2</sup> finished leather |
|-----------------------------------------|--------------------|---------------------------------------------------------|
| <b>RP1</b> - Automotive and upholstery  | Bovine             | 7,06                                                    |
| <b>RP2</b> - Footwear and leather goods | Bovine             | 7,41                                                    |
| <b>RP2</b> - Footwear and leather goods | Calf               | 5,74                                                    |
| <b>RP2</b> - Footwear and leather goods | Caprine            | 2,42                                                    |
| <b>RP2</b> - Footwear and leather goods | Ovine              | 3,06                                                    |
| <b>RP3</b> - Garments and gloves        | Calf               | 5,74                                                    |
| <b>RP3</b> - Garments and gloves        | Caprine            | 2,42                                                    |
| <b>RP3 - Garments and gloves</b>        | Ovine              | 3,79                                                    |
| RP4 - Sole leather                      | Bovine             | 7,71                                                    |

## 1443.4 System boundary

The leather industry at Global level claims that the life cycle of leather made from hides or skins of slaughter animals starts as of the moment that these are generated at the slaughterhouse. In this PEFCR the system boundary includes, however, the livestock and slaughter phases, as prescribed in the PEFCR Guidance version

148 6.3.


- 149 As finished leather is an intermediate product, downstream processes such as B2B distribution, further
- 150 manufacturing into finished consumer products, distribution to customers, use phase and end-of-life
- 151 treatment of used products are out of scope.
- 152 The following life cycle stages and processes shall be included in the system boundary:

# **153** Table 8 Life cycle stages

| Life cycle<br>stage | Short description of the processes included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Farming             | <ul> <li>Breeding of animals, including:</li> <li>Feed cultivation</li> <li>Feed products preparation;</li> <li>Animal breeding;</li> <li>Energy and water consumption for animal raising;</li> <li>Manure management.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Slaughtering        | Animals are professionally slaughtered and flayed (separating the hides or skins from the carcases).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Transport           | Transportation of raw hides / skins from slaughterhouse to tannery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Preservation        | Immediately after the animal has been slaughtered, the flayed skin is subjected to preservation processes to avoid putrefaction. Preservation, salting or drying, is carried out in the slaughterhouse or by specialized companies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Tanning             | <ul> <li>Transformation of hides/skins in finished leathers through production processes that can take place at different locations depending on the mix of in-house production and third parties commissioned work. Within the core processes, all tanning activities shall be considered.</li> <li>From the input side: <ul> <li>Raw hides and skins supply and consumption;</li> <li>Energy production and consumption;</li> <li>Water consumption;</li> <li>Chemical production, supply and consumptions;</li> <li>Packaging materials production, supply and consumption;</li> </ul> </li> <li>From the output side: <ul> <li>Wastewater generation</li> <li>Wastewater treatment, either performed inside or outside the organization;</li> <li>Waste generation and treatment;</li> <li>Air Emissions;</li> <li>Splits when applicable (flesh and middle splits, i.e. when destined to leather).</li> </ul> </li> </ul> |

# 154 System boundaries are schematically illustrated in Figure 3.

## 155 Figure 3 System boundaries



156

157 All upstream processes require the collection of background data with the exception of the supply 158 transportation of raw hides and skins to tanneries, which requires foreground data.

159 All of the distribution processes occurring within the system boundaries are part of the scope. Transportation

160 of finished leather to downstream stages and all of the subsequent distribution processes are out of the 161 scope of this document.

162 According to this PEFCR, no cut-off is applicable.

Each PEF study done in accordance with this PEFCR shall provide in the PEF study a diagram indicating the organizational boundary, to highlight those activities under the control of the organization and those falling ista Situation 1.2 or 2 of the data need matrix

165 into Situation 1, 2 or 3 of the data need matrix.

# 166**3.5 EF impact assessment**

Each PEF study carried out in compliance with this PEFCR shall calculate the PEF-profile<sup>12</sup> including all PEF
 impact categories listed in the Table below.

<sup>&</sup>lt;sup>12</sup> The full list of normalization factors and weighting factors are available in ANNEX 1 – List of EF normalisation and weighting factors.

# **169** Table 9 List of the impact categories to be used to calculate the PEF profile

| Impact category                                   | Indicator                                                                                                  | Unit                                                                                               | Recommended default LCIA<br>method                                                                                |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Climate change                                    | Radiative forcing as Global<br>Warming Potential                                                           | ka COa                                                                                             | Baseline model of 100 years of                                                                                    |
| Climate change-<br>biogenic <sup>13</sup>         | (GWP100)                                                                                                   | kg CO <sub>2 eq</sub>                                                                              | the IPCC (based on IPCC 2013)                                                                                     |
| Ozone depletion                                   | Ozone Depletion Potential<br>(ODP)                                                                         | kg CFC-11 <sub>eq</sub>                                                                            | Steady-state ODPs 1999 as in WMO assessment                                                                       |
| Human toxicity,<br>cancer*                        | Comparative Toxic Unit for humans (CTU <sub>h</sub> )                                                      | CTUh                                                                                               | USEtox model (Rosenbaum et al, 2008)                                                                              |
| Human toxicity,<br>non-cancer*                    | Comparative Toxic Unit for humans (CTU <sub>h</sub> )                                                      | CTUh                                                                                               | USEtox model (Rosenbaum et al, 2008)                                                                              |
| Particulate matter                                | Impact on human health                                                                                     | disease incidence                                                                                  | UN Environment recommended model (Fantke et al 2016)                                                              |
| Ionising radiation,<br>human health               | Human exposure<br>efficiency relative to U <sup>235</sup>                                                  | kBq U <sup>235</sup> <sub>eq</sub>                                                                 | Human health effect model as<br>developed by Dreicer et al. 1995<br>(Frischknecht et al, 2000)                    |
| Photochemical<br>ozone formation,<br>human health | Tropospheric ozone concentration increase                                                                  | kg NMVOC <sub>eq</sub>                                                                             | LOTOS-EUROS model (Van Zelm et<br>al, 2008) as implemented in<br>ReCiPe                                           |
| Acidification                                     | Accumulated Exceedance<br>(AE)                                                                             | mol H+ <sub>eq</sub>                                                                               | Accumulated Exceedance<br>(Seppälä et al. 2006, Posch et al,<br>2008)                                             |
| Eutrophication,<br>terrestrial                    | Accumulated Exceedance<br>(AE)                                                                             | mol N <sub>eq</sub>                                                                                | Accumulated Exceedance<br>(Seppälä et al. 2006, Posch et al,<br>2008)                                             |
| Eutrophication,<br>freshwater                     | Fraction of nutrients<br>reaching freshwater end<br>compartment (P)                                        | kg P <sub>eq</sub>                                                                                 | EUTREND model (Struijs et al, 2009b) as implemented in ReCiPe                                                     |
| Eutrophication,<br>marine                         | Fraction of nutrients<br>reaching marine end<br>compartment (N)                                            | kg N <sub>eq</sub>                                                                                 | EUTREND model (Struijs et al, 2009b) as implemented in ReCiPe                                                     |
| Ecotoxicity,<br>freshwater*                       | Comparative Toxic Unit for ecosystems (CTU <sub>e</sub> )                                                  | CTUe                                                                                               | USEtox model, (Rosenbaum et al, 2008)                                                                             |
| Land use                                          | <ul> <li>Soil quality index<sup>14</sup></li> <li>Biotic production</li> <li>Erosion resistance</li> </ul> | <ul> <li>Dimensionless (pt)</li> <li>kg biotic production<sup>15</sup></li> <li>kg soil</li> </ul> | <ul> <li>Soil quality index based on<br/>LANCA (EC-JRC)<sup>16</sup></li> <li>LANCA (Beck et al. 2010)</li> </ul> |

The full list of characterization factors (EC-JRC, 2017a) is available at this link: <u>http://eplca.jrc.ec.europa.eu/LCDN/developer.xhtml</u>

<sup>&</sup>lt;sup>13</sup> The sub-indicator 'Climate change - biogenic' shall be reported separately because its contribution to the total climate change impact, based on the benchmark results, is more than 5%

<sup>&</sup>lt;sup>14</sup> This index is the result of the aggregation, performed by JRC, of the 4 indicators provided by LANCA model as indicators for land use

<sup>&</sup>lt;sup>15</sup> This refers to occupation. In case of transformation the LANCA indicators are without the year (a)

<sup>&</sup>lt;sup>16</sup> Forthcoming document on the update of the recommended Impact Assessment methods and factors for the EF

| Impact category                         | Indicator                                                                        | Unit                                                                       | Recommended default LCIA<br>method                                                                               |
|-----------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                         | <ul> <li>Mechanical filtration</li> <li>Groundwater<br/>replenishment</li> </ul> | <ul> <li>m<sup>3</sup> water</li> <li>m<sup>3</sup> groundwater</li> </ul> | <ul> <li>LANCA (Beck et al. 2010)</li> <li>LANCA (Beck et al. 2010)</li> <li>LANCA (Beck et al. 2010)</li> </ul> |
| Water use                               | User deprivation potential<br>(deprivation-weighted<br>water consumption)        | m <sup>3</sup> world <sub>eq</sub>                                         | Available WAter REmaining<br>(AWARE) Boulay et al., 2016                                                         |
| Resource use,<br>minerals and<br>metals | Abiotic resource depletion<br>(ADP ultimate reserves)                            | kg Sb <sub>eq</sub>                                                        | CML 2002 (Guinée et al., 2002)<br>and van Oers et al. 2002.                                                      |
| Resource use,<br>fossils                | Abiotic resource<br>depletion – fossil fuels<br>(ADP-fossil)                     | MJ                                                                         | CML 2002 (Guinée et al., 2002)<br>and van Oers et al. 2002                                                       |

170 \*The results for water use might be overestimated and shall therefore be interpreted with caution. Some of

171 the EF datasets tendered during the pilot phase and used in this PEFCR/OEFSR include inconsistencies in the

regionalization and elementary flow implementations. This problem has nothing to do with the impact

assessment method or the implementability of EF methods, but occurred during the technical development

of some of the datasets. The PEFCR/OEFSR remains valid and usable. The affected EF datasets will be

175 corrected by mid-2019. At that time it will be possible to review this PEFCR/OEFSR accordingly, if seen

176 necessary.

177 \*Long-term emissions (occurring beyond 100 years) shall be excluded from the toxic impact categories.

178 Toxicity emissions to this sub-compartment have a characterisation factor set to 0 in the EF LCIA (to ensure

179 consistency). If included by the applicant in the LCI modelling, the sub-compartment 'unspecified (long-term)'

180 shall be used.

# 181 **3.6 Limitations**

- 182 The main limitations in performing a PEF study on leather are:
- The incomplete knowledge on chemicals effectively used in the tanning processes, in terms of composition, active substances and provenience, such safety data sheet do not provide a full disclosure;
- The current lack in commercial databases of some LCI for chemicals used in tanning processes and
   the difficulties in collecting primary data from chemicals producers;
- The difficulties in collecting primary data on animal farming and the current lack in commercial databases of some LCI for animal farming (i.e. goats);
- The difficulties in having tannery specific conversion factors from weight of raw hides and skins (kg)
   to surface (m<sup>2</sup>) of finished leather;
- Lack in commercial database of data for dismissal of specific chemical waste flow.

193 In case primary data on chemicals production and animal farming are made available from the producers

and overall LCIs data quality is appropriate for the study (see 5.4 Data quality requirements), the use of

195 primary data shall be preferred.

- 196 In case primary specific conversion factor from weight of raw hides and skins (kg) to surface (m<sup>2</sup>) of finished
- 197 leather are available, their use should be preferred and clearly reported in the PEF report.

In case primary data are not available, assumptions to be made to overcome these known limitations are
 reported in ANNEX 7 – Default values.

# **4.** Most relevant impact categories, life cycle stages and processes

The most relevant impact categories for the sub-categories RP1 (automotive and upholstery) and RP2 (footwear and leather goods) in scope of this PEFCR are the following:

- 203 Acidification
- Climate change
- Climate change biogenic<sup>17</sup>
- 206 Eutrophication, terrestrial
- Particulate matter
- Resource use, fossils
- Water use

The most relevant impact categories for the sub-categories RP3 (garments and gloves) in scope of this PEFCRare the following:

- Acidification
- Climate change
- Climate change biogenic<sup>17</sup>
- Eutrophication, terrestrial
- Particulate matter
- Resource use, fossils
- Resource use, mineral and metals
- The most relevant impact categories for the sub-categories RP4 (sole leather) in scope of this PEFCR are the following:
- Acidification
- Climate change
- Climate change biogenic<sup>17</sup>
- Eutrophication, terrestrial
- Land use
- Particulate matter
- Resource use, fossils

<sup>&</sup>lt;sup>17</sup> The sub-indicator 'Climate change - biogenic' shall be reported separately because its contribution to the total climate change impact, based on the benchmark results, is more than 5%.

- 228 Climate change shall always be reported as the sum of the three sub-indicators (biogenic, fossil and land use
- 229 and transformation).
- 230 The most relevant life cycle stages for the sub-category RP1 (automotive and upholstery) and RP2 (footwear 231 and leather goods) in scope of this PEFCR are the following:
- 232 Acidification: • 233 • Farming & slaughtering 234 • Climate change: 235 • Farming & slaughtering 236 Tanning 237 • Climate change – biogenic: • Farming & slaughtering 238 239 • Tanning 240 Eutrophication, terrestrial: • 241 • Farming & slaughtering 242 Particulate matter: ٠ 243 • Farming & slaughtering 244 Tanning 0 Resource use, fossils: 245 246 • Farming & slaughtering 247 Tanning 0 248 Water use: 249 • Farming & slaughtering 250 Tanning 0 251 The most relevant life cycle stages for the sub-category RP3 (garments and gloves) in scope of this PEFCR are the following: 252 253 Acidification • 254 Farming & slaughtering 255 • Tanning 256 Climate change • • Farming & slaughtering 257 258 • Tanning 259 • Climate change – biogenic Farming & slaughtering 260 0
  - Tanning

261

263 264

265

266

- 262 Eutrophication, terrestrial •
  - Farming & slaughtering
  - Particulate matter
    - Farming & slaughtering
  - Tanning
- Resource use, fossils 267 268

•

- Tanning
- 269 Resource use, mineral and metals ٠ 270
  - Tanning

The most relevant life cycle stages for the sub-category RP4 (sole leather) in scope of this PEFCR are the following:

- 273 Acidification 274 • Farming & slaughtering 275 • Climate change • Farming & slaughtering 276 277 • Tanning 278 • Climate change – biogenic 279 • Farming & slaughtering 280 • Tanning 281 • Eutrophication, terrestrial 282 • Farming & slaughtering 283 Land use • 284 • Farming & slaughtering 285 • Tanning 286 • Particulate matter 287 • Farming & slaughtering 288 • Resource use, fossils 289 • Farming & slaughtering 290 • Tanning
- 291 The most relevant processes for the product group RP1 (automotive and upholstery) in scope of this PEFCR
- are the following.
- 293 Table 10 List of the most relevant processes for the product group RP1

| Impact<br>category | Processes                                                                                                                                              |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acidification      | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming & slaughtering)                                                    |
|                    | Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming & slaughtering)                                                        |
|                    | Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming & slaughtering)                                                         |
| Climate change     | Basic chrome sulfate production   technology mix   production mix, at plant   100% active substance {ZA} [LCI result] (from tanning)                   |
|                    | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming & slaughtering)                                                    |
|                    | Beef, fresh hides  at slaughterhouse  per kg {GLO} [LCI result] (from farming & slaughtering)                                                          |
|                    | Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming & slaughtering)                                                         |
|                    | Syntetic tannins and retanning agents production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning) |

| Impact<br>category             | Processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                | Thermal energy from natural gas   technology mix regarding firing and flue gas<br>cleaning   production mix, at heat plant   MJ, 100% efficiency {EU-28+3} [LCI result]<br>(from tanning)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Eutrophication,<br>terrestrial | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming &<br>slaughtering)Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming &<br>slaughtering)Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming &<br>slaughtering)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Particulate<br>matter          | Basic chrome sulfate production   technology mix   production mix, at plant   100%<br>active substance {ZA} [LCI result] (from tanning)<br>Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming &<br>slaughtering)<br>Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming &<br>slaughtering)<br>Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming &<br>slaughtering)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Resource use,<br>fossils       | Adipic acid production   technology mix  production mix, at plant   100% active<br>substance {RER} [LCI result] (from tanning)<br>Aniline production   technology mix  production mix, at plant   100% active substance<br>{RER} [LCI result] (from tanning)<br>Basic chrome sulfate production   technology mix  production mix, at plant   100%<br>active substance {ZA} [LCI result] (from tanning)<br>Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming &<br>slaughtering)<br>Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming &<br>slaughtering)<br>Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming &<br>slaughtering)<br>Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming &<br>slaughtering)<br>Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming &<br>slaughtering)<br>Electricity grid mix 1kV-60kV   AC, technology mix   consumption mix, to consumer  <br>1kV - 60kV {IT} [LCI result] (from tanning)<br>Formic acid production   technology mix   production mix, at plant   100% active<br>substance {RER} [LCI result] (from tanning)<br>Melamine formaldehyde resin production   technology mix   production mix, at plant  <br>100% active substance {RER} [LCI result] (from tanning)<br>Sodium hydrosulphide production   technology mix   production mix, at plant  <br>100% active substance {GLO} [LCI result] (from tanning)<br>Sodium sulphate production   technology mix   production mix, at plant  <br>100% active substance {RER} [LCI result] (from tanning)<br>Syntetic tannins and retanning agents production   technology mix   production mix, at<br>plant   100% active substance {RER} [LCI result] (from tanning)<br>Thermal energy from natural gas   technology mix regarding firing and flue gas<br>cleaning   production mix, at heat plant   MJ, 100% efficiency {EU-28+3} [LCI result]<br>(from tanning) |  |  |

| Impact<br>category | Processes                                                                                                                                                                |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Transoceanic ship, containers   heavy fuel oil driven, cargo   consumption mix, to consumer   27.500 dwt payload capacity, ocean going {GLO} [LCI result] (from tanning) |
| Water use          | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming & slaughtering)                                                                      |
|                    | Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming & slaughtering)                                                                          |
|                    | Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming & slaughtering)                                                                           |
|                    | Well water, EU (from tanning)                                                                                                                                            |
|                    | Treatment of residential wastewater, large plant   waste water treatment including                                                                                       |
|                    | sludge treatment   production mix, at plant   1m <sup>3</sup> of waste water treated {EU-28+EFTA}<br>[LCI result] (from tanning)                                         |
|                    |                                                                                                                                                                          |

The most relevant processes for the product group RP2 (footwear and leather goods) in scope of this PEFCRare the following.

# 296 Table 11 List of the most relevant processes for the product group RP2

| Impact<br>category | Processes                                                                                                                                              |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acidification      | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming & slaughtering)                                                    |
|                    | Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming & slaughtering)                                                        |
|                    | Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming & slaughtering)                                                         |
|                    | Sheep   for slaughter   at farm   per kg live weight {EU-28+3} [LCI result] (from farming & slaughtering)                                              |
| Climate change     | Basic chrome sulfate production   technology mix   production mix, at plant   100%                                                                     |
|                    | active substance {ZA} [LCI result] (from tanning)                                                                                                      |
|                    | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming & slaughtering)                                                    |
|                    | Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming & slaughtering)                                                        |
|                    | Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming & slaughtering)                                                         |
|                    | Electricity grid mix 1kV-60kV   AC, technology mix   consumption mix, to consumer   1kV - 60kV {IT} [LCI result] (from tanning)                        |
|                    | Natural tannins extracted from chestnut production   technology mix   production mix,                                                                  |
|                    | at plant   100% active substance {RER} [LCI result] (from tanning)                                                                                     |
|                    | Sheep   for slaughter   at farm   per kg live weight {EU-28+3} [LCI result] (from farming & slaughtering)                                              |
|                    | Syntetic tannins and retanning agents production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning) |

| Impact<br>category             | Processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | Thermal energy from natural gas   technology mix regarding firing and flue gas<br>cleaning   production mix, at heat plant   MJ, 100% efficiency {EU-28+3} [LCI result]<br>(from tanning)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Eutrophication,<br>terrestrial | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming &<br>slaughtering)Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming &<br>slaughtering)Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming &<br>slaughtering)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Particulate<br>matter          | Basic chrome sulfate production   technology mix   production mix, at plant   100%<br>active substance {ZA} [LCI result] (from tanning)<br>Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming &<br>slaughtering)<br>Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming &<br>slaughtering)<br>Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming &<br>slaughtering)<br>Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming &<br>slaughtering)<br>Sheep   for slaughter   at farm   per kg live weight {EU-28+3} [LCI result] (from farming<br>& slaughtering)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Resource use,<br>fossils       | Adipic acid production   technology mix  production mix, at plant   100% active<br>substance {RER} [LCI result] (from tanning)<br>Aniline production   technology mix  production mix, at plant   100% active substance<br>{RER} [LCI result] (from tanning)<br>Articulated lorry transport, total weight >32 t, mix Euro 0-5   diesel driven, Euro 0 - 5<br>mix, cargo   consumption mix, to consumer   more than 32t gross weight / 24,7t<br>payload capacity {EU-28+3} [LCI result] (from tanning)<br>Basic chrome sulfate production   technology mix  production mix, at plant   100%<br>active substance {ZA} [LCI result] (from tanning)<br>Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming &<br>slaughtering)<br>Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming &<br>slaughtering)<br>Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming &<br>slaughtering)<br>Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming &<br>slaughtering)<br>Electricity grid mix 1kV-60kV   AC, technology mix   consumption mix, to consumer  <br>1kV - 60kV {IT] [LCI result] (from tanning)<br>Formic acid production   technology mix   production mix, at plant   100% active<br>substance {RER} [LCI result] (from tanning)<br>Melamine formaldehyde resin production   technology mix   production mix, at plant  <br>100% active substance {RER} [LCI result] (from tanning)<br>Natural tannins extracted from chestnut production   technology mix   production mix,<br>at plant   100% active substance {RER} [LCI result] (from tanning)<br>Sodium sulphate production   technology mix   production mix, at plant   100% active<br>substance {RER} [LCI result] (from tanning) |

| Impact<br>category | Processes                                                                                                                                                                           |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Syntetic tannins and retanning agents production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning)                              |
|                    | Thermal energy from natural gas   technology mix regarding firing and flue gas cleaning   production mix, at heat plant   MJ, 100% efficiency {EU-28+3} [LCI result] (from tanning) |
|                    | Transoceanic ship, containers   heavy fuel oil driven, cargo   consumption mix, to consumer   27.500 dwt payload capacity, ocean going {GLO} [LCI result] (from tanning)            |
|                    | Basic chrome sulfate production   technology mix   production mix, at plant   100% active substance {ZA} [LCI result] (from tanning)                                                |
|                    | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming & slaughtering)                                                                                 |
|                    | Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming & slaughtering)                                                                                     |
| Matarua            | Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming & slaughtering)                                                                                      |
| Water use          | Citric acid production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning)                                                        |
|                    | Fatty acid blend  production mix, technology mix  at plant  {EU+28} [LCI result] (from tanning)                                                                                     |
|                    | Treatment of residential wastewater, large plant   waste water treatment including                                                                                                  |
|                    | sludge treatment   production mix, at plant   1m <sup>3</sup> of waste water treated {EU-28+EFTA}                                                                                   |
|                    | [LCI result] (from tanning)                                                                                                                                                         |
|                    | Well water, EU (from tanning)                                                                                                                                                       |

- The most relevant processes for the product group RP3 (garments and gloves) in scope of this PEFCR are 297 298 the following.
- 299 
   Table 12 List of the most relevant processes for the product group RP3

| Impact<br>category | Processes                                                                                                                            |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                    | Basic chrome sulfate production   technology mix   production mix, at plant   100% active substance {ZA} [LCI result] (from tanning) |
|                    | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming & slaughtering)                                  |
| Acidification      | Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming & slaughtering)                                      |
| Aclumention        | Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming & slaughtering)                                       |
|                    | Sheep   for slaughter   at farm   per kg live weight {AU} [LCI result] (from farming & slaughtering)                                 |
|                    | Sheep   for slaughter   at farm   per kg live weight {EU-28+3} [LCI result] (from farming & slaughtering)                            |

| Impact<br>category | Processes                                                                                                                                                                                                                          |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Articulated lorry transport, total weight >32 t, mix Euro 0-5  diesel driven, Euro 0 - 5<br>mix, cargo  consumption mix, to consumer  more than 32t gross weight / 24,7t<br>payload capacity {EU-28+3} [LCI result] (from tanning) |
|                    | Basic chrome sulfate production   technology mix   production mix, at plant   100% active substance {ZA} [LCI result] (from tanning)                                                                                               |
|                    | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming & slaughtering)                                                                                                                                |
|                    | Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming & slaughtering)                                                                                                                                    |
|                    | Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming & slaughtering)                                                                                                                                     |
| Climate change     | Electricity grid mix 1kV-60kV  AC, technology mix  consumption mix, to consumer <br>1kV - 60kV {IT} [LCI result] (from tanning)                                                                                                    |
|                    | Sheep  for slaughter  at farm  per kg live weight {AU} [LCI result] (from farming & slaughtering)                                                                                                                                  |
|                    | Sheep   for slaughter   at farm   per kg live weight {EU-28+3} [LCI result] (from farming & slaughtering)                                                                                                                          |
|                    | Sodium sulphate production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning)                                                                                                   |
|                    | Syntetic tannins and retanning agents production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning)                                                                             |
|                    | Thermal energy from natural gas   technology mix regarding firing and flue gas<br>cleaning   production mix, at heat plant   MJ, 100% efficiency {EU-28+3} [LCI result]<br>(from tanning)                                          |
|                    | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming & slaughtering)                                                                                                                                |
| Eutrophication,    | Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming & slaughtering)                                                                                                                                    |
| terrestrial        | Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming & slaughtering)                                                                                                                                     |
|                    | Sheep   for slaughter   at farm   per kg live weight {EU-28+3} [LCI result] (from farming & slaughtering)                                                                                                                          |
|                    | Basic chrome sulfate production   technology mix   production mix, at plant   100% active substance {ZA} [LCI result] (from tanning)                                                                                               |
|                    | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming & slaughtering)                                                                                                                                |
| Particulate        | Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming & slaughtering)                                                                                                                                    |
| matter             | Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming & slaughtering)                                                                                                                                     |
|                    | Electricity grid mix 1kV-60kV   AC, technology mix   consumption mix, to consumer   1kV - 60kV {IN} [LCI result] (from tanning)                                                                                                    |
|                    | Sheep   for slaughter   at farm   per kg live weight {AU} [LCI result] (from farming & slaughtering)                                                                                                                               |

| Impact<br>category | Processes                                                                                                                                                                                                                             |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Sheep   for slaughter   at farm   per kg live weight {EU-28+3} [LCI result] (from farming & slaughtering)                                                                                                                             |
|                    | Sodium sulphate production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning)                                                                                                      |
|                    | Adipic acid production   technology mix   production mix, at plant   100% active<br>substance {RER} [LCI result] (from tanning)                                                                                                       |
|                    | Aniline production   technology mix   production mix, at plant   100% active substance<br>{RER} [LCI result] (from tanning)                                                                                                           |
|                    | Anionic resin production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning)                                                                                                        |
|                    | Antifoaming agent, silicone emulsion production   technology mix   production mix, at plant   100% active substance {GLO} [LCI result] (from tanning)                                                                                 |
|                    | Articulated lorry transport, total weight >32 t, mix Euro 0-5   diesel driven, Euro 0 - 5<br>mix, cargo   consumption mix, to consumer   more than 32t gross weight / 24,7t<br>payload capacity {EU-28+3} [LCI result] (from tanning) |
|                    | Basic chrome sulfate production   technology mix   production mix, at plant   100% active substance {ZA} [LCI result] (from tanning)                                                                                                  |
|                    | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming & slaughtering)                                                                                                                                   |
|                    | Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming & slaughtering)                                                                                                                                       |
|                    | Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming & slaughtering)                                                                                                                                        |
| Resource use,      | Electricity grid mix 1kV-60kV   AC, technology mix   consumption mix, to consumer   1kV - 60kV {ES} [LCI result] (from tanning)                                                                                                       |
| fossils            | Electricity grid mix 1kV-60kV   AC, technology mix   consumption mix, to consumer   1kV - 60kV {IT} [LCI result] (from tanning)                                                                                                       |
|                    | Ethoxylated alcohol (AE7) production, petrochemical   technology mix   production<br>mix, at plant   100% active substance {RER} [LCI result] (from tanning)                                                                          |
|                    | Formic acid production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning)                                                                                                          |
|                    | Melamine formaldehyde resin production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning)                                                                                          |
|                    | Natural tannins extracted from chestnut production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning)                                                                              |
|                    | Sheep  for slaughter  at farm  per kg live weight {EU-28+3} [LCI result] (from farming & slaughtering)                                                                                                                                |
|                    | Sodium hydrosulphide production   technology mix   production mix, at plant   100% active substance {GLO} [LCI result] (from tanning)                                                                                                 |
|                    | Sodium sulphate production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning)                                                                                                      |
|                    | Syntetic tannins and retanning agents production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning)                                                                                |
|                    | Synthetic fatliquors production   technology mix  production mix, at plant   100% active substance {RER} [LCI result] (from tanning)                                                                                                  |

| Impact<br>category           | Processes                                                                                                                                                                                     |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | Thermal energy from natural gas   technology mix regarding firing and flue gas cleaning   production mix, at heat plant   MJ, 100% efficiency {EU-28+3} [LCI result] (from tanning)           |
|                              | Basic chrome sulfate production   technology mix   production mix, at plant   100% active substance {ZA} [LCI result] (from tanning)                                                          |
|                              | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming & slaughtering)                                                                                           |
|                              | PET granulates, amorphous   Polymerisation of ethylene   production mix, at plant   0.91- 0.96 g/cm <sup>3</sup> , 28 g/mol per repeating unit {EU-28+EFTA} [LCI result] (from tanning)       |
| Resource use,<br>mineral and | PET granulates, bottle grade   via purified terephthalic acid (PTA) and ethylene glycol   production mix, at plant   192.17 g/mol per repeating unit {EU-28+EFTA} [LCI result] (from tanning) |
| metals                       | Sodium hydrosulphide production   technology mix   production mix, at plant   100% active substance {GLO} [LCI result] (from tanning)                                                         |
|                              | Sodium sulphate production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning)                                                              |
|                              | Sodium tripolyphosphate production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning)                                                      |
|                              | Syntetic tannins and retanning agents production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning)                                        |

300 The most relevant processes for the product group RP4 (sole leather) in scope of this PEFCR are the

## 301 following.

## **302** Table 13 List of the most relevant processes for the product group RP4

| Impact<br>category | Processes                                                                                                                                                |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming and slaughtering)                                                    |
| Acidification      | Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming and slaughtering)                                                        |
|                    | Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming and slaughtering)                                                         |
|                    | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming and                                                                  |
|                    | slaughtering)                                                                                                                                            |
| Climate change     | Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming and slaughtering)                                                        |
| Climate change     | Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming and slaughtering)                                                         |
|                    | Natural tannins extracted from chestnut production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning) |
| Eutrophication,    | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming and                                                                  |
| terrestrial        | slaughtering)                                                                                                                                            |

| Impact<br>category       | Processes                                                                                                                                                |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming and slaughtering)                                                        |
|                          | Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming and slaughtering)                                                         |
|                          | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming and slaughtering)                                                    |
| Land                     | Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming and slaughtering)                                                        |
| Land use                 | Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming and slaughtering)                                                         |
|                          | Natural tannins extracted from chestnut production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning) |
|                          | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming and slaughtering)                                                    |
| Particulate<br>matter    | Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming and slaughtering)                                                        |
|                          | Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming and slaughtering)                                                         |
|                          | Beef, fresh hides   at slaughterhouse   per kg {EU-28+3} [LCI result] (from farming and slaughtering)                                                    |
|                          | Beef, fresh hides   at slaughterhouse   per kg {GLO} [LCI result] (from farming and slaughtering)                                                        |
| Resource use,<br>fossils | Beef, fresh hides   at slaughterhouse   per kg {US} [LCI result] (from farming and slaughtering)                                                         |
|                          | Natural tannins extracted from chestnut production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning) |
|                          | Syntetic tannins and retanning agents production   technology mix   production mix, at plant   100% active substance {RER} [LCI result] (from tanning)   |

## **5. Life cycle inventory**

304 All newly created processes shall be EF-compliant.

In case sampling is needed, it shall be conducted as specified in this PEFCR. However, sampling is not
 mandatory and any applicant of this PEFCR may decide to collect the data from all the plants or farms,
 without performing any sampling.

- 308 5.1 List of mandatory company-specific data
- 309 The following data shall be company specific:
- Chemical substances consumption<sup>18</sup>

<sup>&</sup>lt;sup>18</sup> Default values for the modelling of active substance content in chemicals are reported in Table 36.

- Energy consumption
- Water consumption
- Packaging consumption
- Waste treatment

Table 14 reports all activity data that shall be company specific, including the complete data quality ratings (DQRs) and the Universally Unique Identifier (UUIDs). For chemical substance consumptions, if a substance is missing in Table 14, the user of this PEFCR shall refer to Table 36 where to find the proxies on which to

318 model them. The user of this PEFCR shall modify, as appropriate and where available, the geographical origin

of the reported datasets to make the result of the footprint calculation more accurate.

## 320 Table 14 Mandatory company-specific data

| Requirements for data collection purposes |                                                                                   | Requirements for modelling purposes |                                                                                                                                     |                                               |                                                          |     |     |    |   |      |
|-------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|-----|-----|----|---|------|
| Activity data<br>to be<br>collected       | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure                  | Default dataset to be used                                                                                                          | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR | TeR | GR | Ρ | DQR  |
|                                           |                                                                                   |                                     | Inputs:                                                                                                                             |                                               |                                                          |     |     |    |   |      |
| Yearly<br>Acetaldehyde<br>consumption     | 1 year average                                                                    | kg / year                           | Acetaldehyde production <br>technology mix  production mix,<br>at plant  100% active substance<br>{RER} [LCI result]                | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 96d48c3a-<br>e6e9-<br>4168-<br>a605-<br>0e2d529c<br>9c2c | 1   | 2   | 2  | 2 | 1,75 |
| Yearly Acetic<br>acid<br>consumption      | 1 year average                                                                    | kg / year                           | Acetic acid production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]              | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 09c336e4-<br>436b-<br>4be0-<br>95bd-<br>444d2295<br>dc0d | 1   | 2   | 1  | 2 | 1,5  |
| Yearly<br>Acetone<br>consumption          | 1 year average                                                                    | kg / year                           | Acetone from isopropanol<br>production   technology mix  <br>production mix, at plant   100%<br>active substance {RER} [LCI result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 6a377455<br>-759c-<br>4a39-<br>a18f-<br>6a0d58f1<br>4853 | 1   | 2   | 2  | 2 | 1,75 |
| Yearly Acrylic<br>binder<br>consumption   | 1 year average                                                                    | kg / year                           | Acrylic binder production <br>technology mix  production mix,<br>at plant  100% active substance<br>{RER} [LCI result]              | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 53fc7c4f-<br>e1d5-<br>4bf1-<br>9e24-<br>883d262f<br>ec4a | 1   | 2   | 2  | 2 | 1,75 |

| Requirements for data collection purposes                            |                                                                                   | Requirements for modelling purposes |                                                                                                                             |                                               |                                                          |     |     |     |     |      |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|-----|-----|-----|-----|------|
| Activity data<br>to be<br>collected                                  | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure                  | Default dataset to be used                                                                                                  | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR | TeR | GR  | Р   | DQR  |
| Yearly<br>Acrylonitrile<br>Butadiene<br>Styrene (ABS)<br>consumption | 1 year average                                                                    | kg / year                           | Acrylonitrile Butadiene Styrene<br>(ABS) (foreground elementary<br>flows)   {EU-28+EFT                                      | http://e<br>coinvent<br>.lca-<br>data.co<br>m | ee959a93<br>-9c41-<br>400e-<br>a20a-<br>c51c0af78<br>ad7 | n/a | n/a | n/a | n/a | n/a  |
| Yearly<br>Activated<br>silica<br>consumption                         | 1 year average                                                                    | kg / year                           | Activated silica production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{GLO} [LCI result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 5f01aa3d-<br>141f-<br>45e5-<br>a63e-<br>ce0e461e<br>c5c9 | 1   | 2   | 2   | 2   | 1,75 |
| Yearly Adipic<br>acid<br>consumption                                 | 1 year average                                                                    | kg / year                           | Adipic acid production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]      | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 5021804d<br>-97de-<br>436c-<br>a549-<br>2b818228<br>be87 | 1   | 2   | 2   | 2   | 1,75 |
| Yearly<br>Alkylbenzene<br>consumption                                | 1 year average                                                                    | kg / year                           | Alkylbenzene production <br>technology mix  production mix,<br>at plant  100% active substance<br>{RER} [LCI result]        | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 200b9b10<br>-8b25-<br>4792-<br>9c54-<br>c72825ec<br>6cf3 | 1   | 2   | 2   | 2   | 1,75 |
| Yearly<br>Alkylbenzene<br>sulfonate<br>consumption                   | 1 year average                                                                    | kg / year                           | Alkylbenzene sulfonate<br>production   technology mix  <br>production mix, at plant   100                                   | http://e<br>coinvent<br>.lca-                 | 85920571<br>-c596-<br>4cb7-<br>b220-                     | 1   | 2   | 2   | 2   | 1,75 |

| Requirements                                   | for data collectio                                                                | n purposes         | Require                                                                                                                              | ements for                                    | modelling pu                                             | irposes |     |    |   |      |
|------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|-----|----|---|------|
| Activity data<br>to be<br>collected            | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                           | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR | GR | Ρ | DQR  |
|                                                |                                                                                   |                    |                                                                                                                                      | data.co<br>m                                  | 2cc9e5b4<br>5203                                         |         |     |    |   |      |
| Yearly<br>Aluminium<br>chloride<br>consumption | 1 year average                                                                    | kg / year          | Aluminium chloride production <br>technology mix  production mix,<br>at plant  100% ac                                               | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 26d39acb<br>-fad9-<br>46aa-<br>b66c-<br>8fc9188c5<br>5cf | 1       | 2   | 2  | 2 | 1,75 |
| Yearly<br>Aluminium<br>oxide<br>consumption    | 1 year average                                                                    | kg / year          | Aluminium oxide production <br>technology mix  production mix,<br>at plant  100% active substance<br>{GLO} [LCI result]              | http://e<br>coinvent<br>.lca-<br>data.co<br>m | b943163c<br>-011f-<br>4c67-<br>9ec0-<br>0e71d8f0<br>7657 | 1       | 2   | 2  | 2 | 1,75 |
| Yearly<br>Aluminium<br>sulphate<br>consumption | 1 year average                                                                    | kg / year          | Aluminium sulphate powder<br>production   technology mix  <br>production mix, at plant   100%<br>active substance {RER} [LCI result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | ab02995c-<br>cbd5-<br>4d04-<br>8968-<br>461f7d33<br>10c0 | 1       | 2   | 2  | 2 | 1,75 |
| Yearly<br>Ammonia<br>consumption               | 1 year average                                                                    | kg / year          | Ammonia, as 100% NH3<br>production   technology mix  <br>production mix, at plant   100%<br>active substance {RER} [LCI result]      | http://e<br>coinvent<br>.lca-<br>data.co<br>m | b347c43a-<br>c0c4-<br>4249-<br>9e55-<br>263cae14<br>065a | 1       | 2   | 1  | 2 | 1,5  |
| Yearly<br>Ammonium                             | 1 year average                                                                    | kg / year          | Ammonium bicarbonate<br>production   technology mix                                                                                  | http://e<br>coinvent                          | fb72cb72-<br>106f-                                       | 1       | 2   | 1  | 2 | 1,5  |

| Requirements for data collection purposes     |                                                                                   | Requirements for modelling purposes |                                                                                                                          |                                               |                                                          |      |     |      |      |      |
|-----------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|------|-----|------|------|------|
| Activity data<br>to be<br>collected           | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure                  | Default dataset to be used                                                                                               | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR  | TeR | GR   | Ρ    | DQR  |
| bicarbonate<br>consumption                    |                                                                                   |                                     | production mix, at plant   100%<br>active substance {RER} [LCI result]                                                   | .lca-<br>data.co<br>m                         | 40c1-<br>8868-<br>82e8e4c5<br>c351                       |      |     |      |      |      |
| Yearly<br>Ammonium<br>chloride<br>consumption | 1 year average                                                                    | kg / year                           | Ammonium chloride  Solvay<br>process  at plant  per kg {EU-<br>28+3} [LCI result]                                        | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 17be19f9-<br>3e68-<br>4792-<br>9924-<br>911fe279<br>550b | 1,92 | 1,6 | 1,89 | 2,06 | 1,87 |
| Yearly<br>Ammonium<br>sulfate<br>consumption  | 1 year average                                                                    | kg / year                           | Ammonium sulfate, as N  as N <br>at plant  per kg N {EU-28+3} [LCI<br>result]                                            | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 3ac20745-<br>9f8d-<br>4cce-<br>ab3b-<br>50ceb505<br>9164 | 1,92 | 1,6 | 1,89 | 2,06 | 1,87 |
| Yearly Aniline consumption                    | 1 year average                                                                    | kg / year                           | Aniline production   technology<br>mix   production mix, at plant  <br>100% active substance {RER} [LCI<br>result]       | http://e<br>coinvent<br>.lca-<br>data.co<br>m | df0ee86a-<br>44ba-<br>4717-<br>8b5a-<br>defb452b<br>29a5 | 1    | 2   | 2    | 2    | 1,75 |
| Yearly Anionic<br>resin<br>consumption        | 1 year average                                                                    | kg / year                           | Anionic resin production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | c00e4a3b-<br>67b2-<br>407c-<br>b039-<br>dc4c598c<br>de63 | 1    | 2   | 2    | 2    | 1,75 |

| Requirements                                                                   | for data collectio                                                                | n purposes         | Require                                                                                                                                                    | ements for                                    | modelling pu                                             | irposes |      |      |      |      |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|------|------|------|------|
| Activity data<br>to be<br>collected                                            | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                                                 | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR  | GR   | Ρ    | DQR  |
| Yearly<br>Antifoaming<br>agent,<br>ethoxylate<br>fatty alcohols<br>consumption | 1 year average                                                                    | kg / year          | Antifoaming agent, ethoxylate<br>fatty alcohols production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{GLO} [LCI result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 02624b75<br>-a8ec-<br>4703-<br>9f25-<br>1623eb27<br>e3b7 | 1       | 2    | 2    | 2    | 1,75 |
| Yearly<br>Antifoaming<br>agent, silicone<br>emulsion<br>consumption            | 1 year average                                                                    | kg / year          | Antifoaming agent, silicone<br>emulsion production   technology<br>mix   production mix, at plant  <br>100% active substance {GLO} [LCI<br>result]         | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 152c8bcc-<br>6454-<br>45da-<br>b80c-<br>9a5415a8<br>70ad | 1       | 2    | 2    | 2    | 1,75 |
| Yearly<br>Antimony<br>consumption                                              | 1 year average                                                                    | kg / year          | Antimony  technology mix,<br>primary production  production<br>mix, at plant  99.5% An                                                                     | http://e<br>coinvent<br>.lca-<br>data.co<br>m | e856ebf4-<br>daad-<br>41c0-<br>a531-<br>13c7a516<br>d350 | 2       | 2    | 1    | 2    | 1,75 |
| Yearly Basic<br>chrome<br>sulfate<br>consumption                               | 1 year average                                                                    | kg / year          | Basic chrome sulfate production <br>technology mix  production mix,<br>at plant  100% active substance<br>{ZA} [LCI result]                                | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 4ed59462<br>-16f1-<br>473a-<br>9a53-<br>5d1a53b6<br>dd48 | 1       | 2    | 2    | 2    | 1,75 |
| Yearly<br>Beeswax<br>consumption                                               | 1 year average                                                                    | kg / year          | Beeswax  conventional farming <br>at farm  per kg {EU-28+3} [LCI<br>result]                                                                                | http://e<br>coinvent<br>.lca-                 | 8bce25b0<br>-9bb1-<br>414f-<br>ac49-                     | 1,63    | 2,95 | 2,92 | 2,18 | 2,42 |

| Requirements                                                 | for data collection                                                               | n purposes         | Requir                                                                                                                                    | ements for                                    | modelling pu                                             | urposes |     |    |   |      |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|-----|----|---|------|
| Activity data<br>to be<br>collected                          | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                                | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR | GR | Ρ | DQR  |
|                                                              |                                                                                   |                    |                                                                                                                                           | data.co<br>m                                  | f2014b6fe<br>6cf                                         |         |     |    |   |      |
| Yearly<br>Benzene<br>consumption                             | 1 year average                                                                    | kg / year          | Benzene production  technology<br>mix  production mix, at plant <br>100% active substa                                                    | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 5f8032ff-<br>71a3-41ff-<br>bcf8-<br>0e6eceb9<br>3ba2     | 1       | 2   | 1  | 2 | 1,5  |
| Yearly<br>Benzo[thia]dia<br>zole-<br>compound<br>consumption | 1 year average                                                                    | kg / year          | Benzo[thia]diazole-compound<br>production   technology mix  <br>production mix, at plant   100%<br>active substance {GLO} [LCI<br>result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 653edc53<br>-8aaf-<br>47f6-<br>9cae-<br>15b800a9<br>8465 | 2       | 1   | 2  | 2 | 1,75 |
| Yearly<br>Bisphenol A<br>powder<br>consumption               | 1 year average                                                                    | kg / year          | Bisphenol A, powder production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]            | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 960a9902<br>-f44f-<br>4c28-<br>9653-<br>0ba6e8cd<br>16bf | 1       | 2   | 2  | 2 | 1,75 |
| Yearly Butanol consumption                                   | 1 year average                                                                    | kg / year          | Butanol production   technology<br>mix   production mix, at plant  <br>100% active substance {RER} [LCI<br>result]                        | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 7e59f1a6-<br>06f4-<br>4447-<br>bffb-<br>b4d7d7aa<br>9141 | 1       | 2   | 1  | 2 | 1,5  |
| Yearly Butyl<br>acetate<br>consumption                       | 1 year average                                                                    | kg / year          | Butyl acetate production <br>technology mix  production mix,                                                                              | http://e<br>coinvent<br>.lca-                 | b3cc9de9-<br>8511-<br>4eb9-                              | 1       | 2   | 2  | 2 | 1,75 |

| Requirements                            | for data collectio                                                                | n purposes         | Require                                                                                                                                                                 | ements for                                    | modelling pu                                             | urposes |     |    |   |      |
|-----------------------------------------|-----------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|-----|----|---|------|
| Activity data<br>to be<br>collected     | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                                                              | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR | GR | Ρ | DQR  |
|                                         |                                                                                   |                    | at plant  100% active substance<br>{RER} [LCI result]                                                                                                                   | data.co<br>m                                  | b7a5-<br>50680b37<br>06eb                                |         |     |    |   |      |
| Yearly Carbon<br>black<br>consumption   | 1 year average                                                                    | kg / year          | Carbon black, general purposes<br>production   technology mix  <br>production mix, at plant   100%<br>active substance {RER} [LCI result]                               | http://e<br>coinvent<br>.lca-<br>data.co<br>m | fde4abff-<br>7cd7-<br>4535-<br>b472-<br>481321d7<br>d936 | 1       | 1   | 2  | 2 | 1,5  |
| Yearly Carbon<br>dioxide<br>consumption | 1 year average                                                                    | kg / year          | Carbon dioxide, liquid<br>production   technology mix  <br>production mix, at plant   100                                                                               | http://e<br>coinvent<br>.lca-<br>data.co<br>m | f418d090-<br>af36-<br>4aac-<br>a593-<br>206e9cc3<br>141c | 1       | 2   | 2  | 2 | 1,75 |
| Yearly Cast<br>iron<br>consumption      | 1 year average                                                                    | kg / year          | Cast iron   electric arc furnace<br>route, from steel scrap,<br>secondary production   single<br>route, at plant   > 2,06 % carbon<br>content {EU-28+EFTA} [LCI result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 0d6cb1e0<br>-a805-<br>458b-<br>9cbd-<br>41df4e4c<br>9d0c | 2       | 1   | 1  | 1 | 1,25 |
| Yearly<br>Cationic resin<br>consumption | 1 year average                                                                    | kg / year          | Cationic resin production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]                                               | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 0435b538<br>-6067-<br>40df-<br>b932-<br>7e5831e8<br>6b26 | 1       | 2   | 2  | 2 | 1,75 |

| Requirements                                                          | for data collectio                                                                | n purposes         | Require                                                                                                                                           | ements for                                    | modelling pu                                             | urposes |     |    |   |      |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|-----|----|---|------|
| Activity data<br>to be<br>collected                                   | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                                        | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR | GR | Ρ | DQR  |
| Yearly<br>Cellulose<br>consumption                                    | 1 year average                                                                    | kg / year          | Cellulose (excluding blowing)<br>production   technology mix  <br>production mix, at plant   100%<br>active substance {RER} [LCI result]          | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 408f01c1-<br>8526-<br>4f01-<br>938e-<br>231245ee<br>540b | 1       | 2   | 2  | 2 | 1,75 |
| Yearly Citric<br>acid<br>consumption                                  | 1 year average                                                                    | kg / year          | Citric acid production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]                            | http://e<br>coinvent<br>.lca-<br>data.co<br>m | d0becc20-<br>49c4-<br>4e8f-9ff8-<br>8c392d56<br>10ed     | 1       | 1   | 1  | 2 | 1,25 |
| Yearly<br>Corrugated<br>board,<br>uncoated<br>consumption             | 1 year average                                                                    | kg / year          | Corrugated board, uncoated  <br>Kraft Pulping Process, pulp<br>pressing and drying   pro                                                          | http://lc<br>dn.think<br>step.co<br>m/Node    | 574bdb1e<br>-2ed3-<br>46f1-<br>bd14-<br>bb76f739<br>bb71 | 1       | 1   | 1  | 1 | 1    |
| Yearly<br>Diethanolami<br>ne<br>consumption                           | 1 year average                                                                    | kg / year          | Diethanolamine production <br>technology mix  production mix,<br>at plant  100% active substance<br>{RER} [LCI result]                            | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 5ac9b8ce-<br>0069-<br>44e3-8ffe-<br>719b066b<br>d88f     | 1       | 2   | 2  | 2 | 1,75 |
| Yearly<br>Dipropylene<br>glycol<br>monomethyl<br>ether<br>consumption | 1 year average                                                                    | kg / year          | Dipropylene glycol monomethyl<br>ether production   technology<br>mix   production mix, at plant  <br>100% active substance {RER} [LCI<br>result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | f3e16f7f-<br>b4f6-<br>436c-<br>a3d1-<br>bfbe560c<br>7fdd | 1       | 2   | 2  | 2 | 1,75 |

| Requirements                                                 | for data collectio                                                                | n purposes         | Require                                                                                                                                                                                            | ements for                                    | modelling pu                                             | urposes |     |    |   |      |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|-----|----|---|------|
| Activity data<br>to be<br>collected                          | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                                                                                         | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR | GR | Ρ | DQR  |
| Yearly EDTA<br>consumption                                   | 1 year average                                                                    | kg / year          | EDTA production   technology<br>mix   production mix, at plant  <br>100% active substance {RER} [LCI<br>result]                                                                                    | http://e<br>coinvent<br>.lca-<br>data.co<br>m | f8eb9518-<br>ab48-<br>4476-<br>a74e-<br>56a28b64<br>14da | 1       | 2   | 2  | 2 | 1,75 |
| Yearly<br>Electricity<br>from EU hard<br>coal<br>consumption | 1 year average                                                                    | kWh /<br>year      | Electricity from hard coal   AC,<br>mix of direct and CHP, technology<br>mix regarding firing and flue gas<br>cleaning   production mix, at<br>power plant   1kV - 60kV {EU-<br>28+3} [LCI result] | http://lc<br>dn.think<br>step.co<br>m/Node    | 6d68bce7<br>-71c6-<br>4f30-<br>b390-<br>8b28983b<br>c187 | 2       | 2   | 2  | 1 | 1,75 |
| Yearly<br>Electricity<br>from EU grid<br>consumption         | 1 year average                                                                    | kWh /<br>year      | Electricity grid mix 1kV-60kV  AC,<br>technology mix  consumption<br>mix, at consumer  1kV - 60kV<br>{EU-28+3} [LCI result]                                                                        | http://lc<br>dn.think<br>step.co<br>m/Node    | 34960d4d<br>-af62-<br>43a0-<br>aa76-<br>adc5fcf57<br>246 | 2       | 2   | 2  | 1 | 1,75 |
| Yearly<br>Enzymes<br>consumption                             | 1 year average                                                                    | kg / year          | Enzymes production   technology<br>mix   production mix, at plant  <br>100% active substance {RER} [LCI<br>result]                                                                                 | http://e<br>coinvent<br>.lca-<br>data.co<br>m | c2ec381a-<br>5480-<br>45e3-<br>a5e9-<br>10e13152<br>f2fd | 2       | 2   | 2  | 1 | 1,75 |
| Yearly Ethanol consumption                                   | 1 year average                                                                    | kg / year          | Ethanol production   technology<br>mix   production mix, at plant  <br>100% active substance {RER} [LCI<br>result]                                                                                 | http://e<br>coinvent<br>.lca-                 | 9b02d32e<br>-8a06-<br>41e3-<br>9762-                     | 1       | 2   | 2  | 2 | 1,75 |

| Requirements                                                    | for data collectio                                                                | n purposes         | Requir                                                                                                                                              | ements for                                    | modelling pu                                             | irposes |      |      |      |      |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|------|------|------|------|
| Activity data<br>to be<br>collected                             | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                                          | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR  | GR   | Р    | DQR  |
|                                                                 |                                                                                   |                    |                                                                                                                                                     | data.co<br>m                                  | 6438b635<br>3009                                         |         |      |      |      |      |
| Yearly<br>Ethoxylated<br>alcohol (AE7)<br>consumption           | 1 year average                                                                    | kg / year          | Ethoxylated alcohol (AE7)<br>production, petrochemical <br>technology mix  production mix,<br>at plant  100% active substance<br>{RER} [LCI result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 5a1a8078<br>-73b6-<br>484c-<br>9393-<br>4bcef32d<br>0c2e | 1       | 2    | 1    | 2    | 1,5  |
| Yearly Ethyl<br>acetate<br>consumption                          | 1 year average                                                                    | kg / year          | Ethyl acetate production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]                            | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 8d0a1ebb<br>-ec2d-<br>4fce-8f3a-<br>2494e7fb<br>d752     | 1       | 2    | 2    | 2    | 1,75 |
| Yearly<br>Ethylene<br>glycol<br>consumption                     | 1 year average                                                                    | kg / year          | Ethylene glycol production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]                          | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 8a0bea16<br>-5e99-<br>4411-<br>b013-<br>3e4b45ca<br>1459 | 1       | 2    | 2    | 2    | 1,75 |
| Yearly<br>Ethylene vinyl<br>acetate<br>copolymer<br>consumption | 1 year average                                                                    | kg / year          | Ethylene vinyl acetate<br>copolymer  Technology mix <br>Production mix, at plant  {GLO}<br>[LCI result]                                             | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 0259ff8c-<br>04c1-4caf-<br>985b-<br>c86f3bc43<br>5da     | 2,4     | 2,6  | 2,8  | 2,7  | 2,62 |
| Yearly Fatty<br>acids<br>consumption                            | 1 year average                                                                    | kg / year          | Fatty acid blend  production mix,<br>technology mix  at plant <br>{EU+28} [LCI result]                                                              | http://e<br>coinvent<br>.lca-                 | 80c1465c-<br>9507-<br>4887-<br>b810-                     | 1,7     | 1,49 | 1,75 | 2,32 | 1,81 |

| Requirements                                  | for data collection                                                               | n purposes         | Require                                                                                                                      | ements for                                    | modelling pu                                             | irposes |     |    |   |      |
|-----------------------------------------------|-----------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|-----|----|---|------|
| Activity data<br>to be<br>collected           | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                   | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR | GR | Р | DQR  |
|                                               |                                                                                   |                    |                                                                                                                              | data.co<br>m                                  | 59ab06d8<br>19e0                                         |         |     |    |   |      |
| Yearly Fatty<br>alcohols<br>consumption       | 1 year average                                                                    | kg / year          | Fatty alcohols production <br>technology mix  production mix,<br>at plant  100% active substance<br>{GLO} [LCI result]       | http://e<br>coinvent<br>.lca-<br>data.co<br>m | f0d6cd33-<br>9022-<br>4cd6-<br>af15-<br>9a88c108<br>1685 | 2       | 2   | 2  | 2 | 2    |
| Yearly<br>Formaldehyde<br>consumption         | 1 year average                                                                    | kg / year          | Formaldehyde production <br>technology mix  production mix,<br>at plant  100% active substance<br>{RER} [LCI result]         | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 49ace041-<br>d5cb-<br>45c1-<br>b963-<br>0e954f65<br>0bd6 | 1       | 2   | 2  | 2 | 1,75 |
| Yearly Formic<br>acid<br>consumption          | 1 year average                                                                    | kg / year          | Formic acid production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]       | http://e<br>coinvent<br>.lca-<br>data.co<br>m | c2b6c7f9-<br>2a6b-<br>416b-<br>8e0b-<br>c4bc7a50f<br>2b0 | 1       | 2   | 1  | 2 | 1,5  |
| Yearly<br>Hydrochloric<br>acid<br>consumption | 1 year average                                                                    | kg / year          | Hydrochloric acid production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | d5953cab<br>-21fd-<br>44ea-<br>ab3a-<br>17a44ed3<br>c260 | 1       | 2   | 1  | 2 | 1,5  |
| Yearly<br>Hydrogen                            | 1 year average                                                                    | kg / year          | Hydrogen peroxide, 50%<br>production   technology mix                                                                        | http://e<br>coinvent                          | c222168e-<br>3bf0-                                       | 1       | 2   | 2  | 2 | 1,75 |

| Requirements                                 | for data collectio                                                                | n purposes         | Require                                                                                                             | ements for                                    | modelling pu                                             | urposes |     |    |   |      |
|----------------------------------------------|-----------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|-----|----|---|------|
| Activity data<br>to be<br>collected          | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                          | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR | GR | Р | DQR  |
| peroxide<br>consumption                      |                                                                                   |                    | production mix, at plant   100%<br>active substance {RER} [LCI result]                                              | .lca-<br>data.co<br>m                         | 4adc-<br>800b-<br>172f3b36<br>a662                       |         |     |    |   |      |
| Yearly Iron (II)<br>sulphate<br>consumption  | 1 year average                                                                    | kg / year          | Iron (II) sulphate production <br>technology mix  production mix,<br>at plant  100% ac                              | http://e<br>coinvent<br>.lca-<br>data.co<br>m | d681c7bd<br>-f76b-<br>4afa-<br>9176-<br>42692894<br>2776 | 1       | 2   | 2  | 2 | 1,75 |
| Yearly Iron<br>(III) chloride<br>consumption | 1 year average                                                                    | kg / year          | Iron (III) chloride production <br>technology mix  production mix,<br>at plant  100% a                              | http://e<br>coinvent<br>.lca-<br>data.co<br>m | caabff9b-<br>4d10-<br>417d-<br>8c1a-<br>59d38a06<br>a14c | 1       | 2   | 2  | 2 | 1,75 |
| Yearly<br>Isopropanol<br>consumption         | 1 year average                                                                    | kg / year          | Isopropanol production <br>technology mix  production mix,<br>at plant  100% active substance<br>{RER} [LCI result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 2e127b35<br>-0c42-<br>485e-<br>9611-<br>bddcdb0c<br>ab4a | 1       | 2   | 2  | 2 | 1,75 |
| Yearly Kaolin<br>consumption                 | 1 year average                                                                    | kg / year          | Kaolin production   technology<br>mix   production mix, at plant  <br>100% active substance {RER} [LCI<br>result]   | http://e<br>coinvent<br>.lca-<br>data.co<br>m | f57ebfdb-<br>d033-<br>4e45-<br>aa13-<br>25bbd71b<br>b3e3 | 1       | 1   | 1  | 2 | 1,25 |

| Requirements                                        | for data collectio                                                                | n purposes         | Requir                                                                                                                     | ements for                                    | modelling pu                                             | urposes |      |      |      |      |
|-----------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|------|------|------|------|
| Activity data<br>to be<br>collected                 | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                 | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR  | GR   | Ρ    | DQR  |
| Yearly Kraft<br>paper,<br>bleached<br>consumption   | 1 year average                                                                    | kg / year          | Kraft paper, bleached <br>production mix  at plant  per kg<br>paper {EU-28+3} [LCI result]                                 | http://lc<br>dn.think<br>step.co<br>m/Node    | b5e2916f-<br>cd5d-<br>40da-<br>8b5f-<br>29e4997fc<br>087 | 2,57    | 2,01 | 2,01 | 2,01 | 2,15 |
| Yearly Kraft<br>paper,<br>unbleached<br>consumption | 1 year average                                                                    | kg / year          | Kraft paper, unbleached <br>production mix  at plant  per kg<br>paper {EU-28+3} [LCI result]                               | http://lc<br>dn.think<br>step.co<br>m/Node    | 9431095e<br>-9602-<br>4714-<br>b99d-<br>276ed71e<br>7b7d | 2,57    | 2,01 | 2,01 | 2,01 | 2,15 |
| Yearly Lactic<br>acid<br>consumption                | 1 year average                                                                    | kg / year          | Lactic acid production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]     | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 460f4294-<br>2b1f-<br>41d9-<br>9596-<br>d0168a51<br>b10c | 1       | 2    | 1    | 2    | 1,5  |
| Yearly Light<br>fuel oil<br>consumption             | 1 year average                                                                    | l / year           | Light fuel oil at refinery  from<br>crude oil  production mix, at<br>refinery  0.1 wt.% sulphur {EU-<br>28+3} [LCI result] | http://lc<br>dn.think<br>step.co<br>m/Node    | 386821c2-<br>309d-<br>4019-<br>8972-<br>04a07208<br>2ef5 | 1       | 1    | 1    | 2    | 1,25 |
| Yearly Lime consumption                             | 1 year average                                                                    | kg / year          | Lime production   technology<br>mix   production mix, at plant  <br>100% active substance {RER} [LCI<br>result]            | http://e<br>coinvent<br>.lca-                 | 64e2bd59<br>-5f61-<br>4eb3-<br>bfd7-                     | 4       | 1    | 1    | 2    | 2    |

| Requirements                                  | for data collectio                                                                | n purposes         | Requir                                                                                                                     | ements for                                    | modelling pu                                             | urposes |      |      |      |      |
|-----------------------------------------------|-----------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|------|------|------|------|
| Activity data<br>to be<br>collected           | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                 | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR  | GR   | Р    | DQR  |
|                                               |                                                                                   |                    |                                                                                                                            | data.co<br>m                                  | d19c3aec<br>60b5                                         |         |      |      |      |      |
| Yearly<br>Magnesium<br>oxide<br>consumption   | 1 year average                                                                    | kg / year          | Magnesium oxide production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 134769e1<br>-fa36-<br>4fcd-<br>902b-<br>762dcd79<br>f24d | 1       | 1    | 1    | 2    | 1,25 |
| Yearly<br>Magnesium<br>sulfate<br>consumption | 1 year average                                                                    | kg / year          | Magnesium sulfate  at plant  per<br>kg {EU-28+3} [LCI result]                                                              | http://e<br>coinvent<br>.lca-<br>data.co<br>m | bb83a61d<br>-11a6-<br>4385-<br>8084-<br>04324725<br>ff85 | 2,52    | 2,56 | 2,41 | 2,08 | 2,39 |
| Yearly<br>Magnetite<br>consumption            | 1 year average                                                                    | kg / year          | Magnetite production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]       | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 60fef189-<br>d64e-<br>4cc6-<br>a98c-<br>303fef1c6<br>3d9 | 1       | 2    | 2    | 2    | 1,75 |
| Yearly Maize<br>starch<br>consumption         | 1 year average                                                                    | kg / year          | Maize starch, dried  from wet<br>milling, production mix  at plant <br>{GLO} [LCI result]                                  | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 3e59ff2f-<br>0021-<br>4568-<br>a850-<br>33ca7a4c<br>ad58 | 2,16    | 1,53 | 1,99 | 2,34 | 2,01 |

| Requirements                                                   | for data collectio                                                                | n purposes         | Require                                                                                                                                      | ements for                                    | modelling pu                                             | urposes |     |    |   |      |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|-----|----|---|------|
| Activity data<br>to be<br>collected                            | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                                   | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR | GR | Ρ | DQR  |
| Yearly Maleic<br>anhydride<br>consumption                      | 1 year average                                                                    | kg / year          | Maleic anhydride production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]                  | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 01a293c7-<br>f183-<br>40ea-<br>b7d6-<br>6c1b4f03<br>9462 | 1       | 2   | 1  | 2 | 1,5  |
| Yearly<br>Melamine<br>formaldehyde<br>resin<br>consumption     | 1 year average                                                                    | kg / year          | Melamine formaldehyde resin<br>production   technology mix  <br>production mix, at plant   100%<br>active substance {RER} [LCI result]       | http://e<br>coinvent<br>.lca-<br>data.co<br>m | cd18a8cb-<br>0992-<br>44fb-<br>b346-<br>d420b8c3<br>f0bf | 1       | 2   | 2  | 2 | 1,75 |
| Yearly<br>Methanol<br>consumption                              | 1 year average                                                                    | kg / year          | Methanol production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]                          | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 46a25711<br>-f534-<br>4dce-<br>bd95-<br>113f8981<br>d2da | 1       | 2   | 2  | 2 | 1,75 |
| Yearly<br>Methylene<br>diphenyldiisoc<br>yanate<br>consumption | 1 year average                                                                    | kg / year          | Methylene diphenyldiisocyanate<br>production   technology mix  <br>production mix, at plant   100%<br>active substance {GLO} [LCI<br>result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 5c71affa-<br>a573-<br>42ac-<br>af57-<br>1d44bcf5<br>e37b | 1       | 2   | 2  | 2 | 1,75 |
| Yearly<br>Monoethanol<br>amine<br>consumption                  | 1 year average                                                                    | kg / year          | Monoethanolamine production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{GLO} [LCI result]                  | http://e<br>coinvent<br>.lca-                 | 4b1d29e6<br>-cf29-<br>40e0-<br>83c5-                     | 1       | 2   | 2  | 2 | 1,75 |

| Requirements                                                           | for data collectio                                                                | n purposes         | Require                                                                                                                                               | ements for                                    | modelling pu                                             | urposes |      |      |      |      |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|------|------|------|------|
| Activity data<br>to be<br>collected                                    | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                                            | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR  | GR   | Ρ    | DQR  |
|                                                                        |                                                                                   |                    |                                                                                                                                                       | data.co<br>m                                  | 4eec4412<br>5cba                                         |         |      |      |      |      |
| Yearly Natural<br>tannins<br>extracted<br>from chestnut<br>consumption | 1 year average                                                                    | kg / year          | Natural tannins extracted from<br>chestnut production   technology<br>mix   production mix, at plant  <br>100% active substance {RER} [LCI<br>result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | f310824d-<br>5abd-<br>47c6-<br>aab5-<br>e105288a<br>8904 | 1       | 1    | 1    | 2    | 1,25 |
| Yearly<br>Newsprint<br>consumption                                     | 1 year average                                                                    | kg / year          | Newsprint  production mix  at<br>plant  per kg Newsprint {EU-<br>28+3} [LCI result]                                                                   | http://lc<br>dn.think<br>step.co<br>m/Node    | 98b2b259<br>-83b7-<br>4e0f-<br>bde9-<br>99a85b8c<br>38cd | 2,57    | 2,01 | 2,01 | 2,01 | 2,15 |
| Yearly<br>Nitrocellulose<br>consumption                                | 1 year average                                                                    | kg / year          | Nitrocellulose   Technology mix  <br>Production mix, at plant   without<br>ethanol {GLO}                                                              | http://e<br>coinvent<br>.lca-<br>data.co<br>m | b7e8f4dc-<br>3c83-<br>4995-<br>9e75-<br>9fde5391<br>47d3 | 2,5     | 2,6  | 3    | 3    | 2,77 |
| Yearly<br>Nitrogen<br>consumption                                      | 1 year average                                                                    | kg / year          | Nitrogen liquid production <br>technology mix  production mix,<br>at plant  100% activ                                                                | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 085a93bb<br>-b5b7-<br>4137-<br>a8de-<br>637b4d85<br>a93d | 1       | 1    | 1    | 2    | 1,25 |

| Requirements                                                | for data collectio                                                                | n purposes         | Requir                                                                                                                                                         | ements for                                    | modelling pu                                             | urposes |      |      |      |      |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|------|------|------|------|
| Activity data<br>to be<br>collected                         | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                                                     | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR  | GR   | Ρ    | DQR  |
| Yearly<br>Organophosp<br>horus-<br>compounds<br>consumption | 1 year average                                                                    | kg / year          | Organophosphorus-compounds <br>at plant  per kg of active<br>ingredient {EU-28+3} [LCI                                                                         | http://e<br>coinvent<br>.lca-<br>data.co<br>m | f34e2646-<br>b8b2-<br>42fb-<br>953a-<br>4546cbb3<br>70b1 | 2,51    | 2,56 | 2,41 | 2,08 | 2,39 |
| Yearly Oxi-<br>sulphited lard<br>oil<br>consumption         | 1 year average                                                                    | kg / year          | Oxi-sulphited lard oil production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]                              | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 2d7f5767-<br>39bf-<br>46aa-<br>b6c5-<br>cf3185db<br>eb74 | 1       | 2    | 2    | 2    | 1,75 |
| Yearly Oxygen consumption                                   | 1 year average                                                                    | kg / year          | Oxygen production   technology<br>mix   production mix, at plant  <br>100% active substan                                                                      | http://e<br>coinvent<br>.lca-<br>data.co<br>m | b12a9897<br>-9ebb-<br>41e9-<br>8c3b-<br>18db23ec<br>d99e | 1       | 1    | 1    | 2    | 1,25 |
| Yearly Pallet<br>use                                        | 1 year average                                                                    | kg / year          | Pallet, wood (80x120)  sawing,<br>piling, nailing  single route, at<br>plant  25 kg/piece, nominal<br>loading capacity of 1000kg {EU-<br>28+EFTA} [LCI result] | http://lc<br>dn.think<br>step.co<br>m/Node    | 3203d6d8<br>-2760-<br>4b7b-<br>b1c6-<br>f82681e9<br>e2f3 | 2       | 2    | 2    | 2    | 2    |
| Yearly PET<br>granulates,<br>amorphous<br>consumption       | 1 year average                                                                    | kg / year          | PET granulates, amorphous<br>Polymerisation of ethylene<br>production mix, at plant   0.91-<br>0.96 g/cm3, 28 g/mol per                                        | http://lc<br>dn.think<br>step.co<br>m/Node    | 52ecabcf-<br>fb6a-<br>4d58-<br>895c-                     | 3       | 3    | 3    | 3    | 3    |

| Requirements                                             | for data collectio                                                                | n purposes         | Require                                                                                                                                                                                       | ements for                                    | modelling pu                                             | urposes |      |      |      |      |
|----------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|------|------|------|------|
| Activity data<br>to be<br>collected                      | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                                                                                    | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR  | GR   | Р    | DQR  |
|                                                          |                                                                                   |                    | repeating unit {EU-28+EFTA} [LCI<br>result]                                                                                                                                                   |                                               | 41078326<br>bbcb                                         |         |      |      |      |      |
| Yearly PET<br>granulates,<br>bottle grade<br>consumption | 1 year average                                                                    | kg / year          | PET granulates, bottle grade   via<br>purified terephthalic acid (PTA)<br>and ethylene glycol   production<br>mix, at plant   192.17 g/mol per<br>repeating unit {EU-28+EFTA} [LCI<br>result] | http://lc<br>dn.think<br>step.co<br>m/Node    | 61042919<br>-2439-<br>45d0-<br>ba10-<br>66e22116<br>7a24 | 2       | 1    | 1    | 2    | 1,5  |
| Yearly<br>Phenolic resin<br>consumption                  | 1 year average                                                                    | kg / year          | Phenolic resin production  <br>technology mix   production mix,<br>at plant   100% active                                                                                                     | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 88724fad-<br>7d7d-<br>4eda-<br>b7c7-<br>658ac9fa3<br>78c | 1       | 2    | 2    | 2    | 1,75 |
| Yearly<br>Phenoxy-<br>compounds<br>consumption           | 1 year average                                                                    | kg / year          | Phenoxy-compounds  at plant <br>per kg of active ingredient {EU-<br>28+3} [LCI result]                                                                                                        | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 5d88b73f-<br>de77-<br>4c58-<br>9117-<br>82fc228f2<br>01b | 2,52    | 2,56 | 2,41 | 2,08 | 2,39 |
| Yearly<br>Phosphoric<br>acid<br>consumption              | 1 year average                                                                    | kg / year          | Phosphoric acid production <br>technology mix  production mix,<br>at plant  100% activ                                                                                                        | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 648a9abc-<br>c1be-<br>4c18-<br>8c0e-<br>e7b8d99b<br>407a | 1       | 2    | 2    | 2    | 1,75 |

| Requirements                                      | for data collectio                                                                | n purposes         | Requir                                                                                                                           | ements for                                    | modelling pu                                             | urposes | 5   |     |     |      |
|---------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|-----|-----|-----|------|
| Activity data<br>to be<br>collected               | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                       | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR | GR  | Ρ   | DQR  |
| Yearly<br>Phosphoryl<br>chloride<br>consumption   | 1 year average                                                                    | kg / year          | Phosphoryl chloride production <br>technology mix  production mix,<br>at plant  100% a                                           | http://e<br>coinvent<br>.lca-<br>data.co<br>m | a8f77ac7-<br>8d7a-<br>49cf-<br>913a-<br>6a05845f<br>338d | 1       | 2   | 2   | 2   | 1,75 |
| Yearly<br>Phthalocyanin<br>e blue<br>consumption  | 1 year average                                                                    | kg / year          | Phthalocyanine blue   Technology<br>mix   Production mix, at plant  <br>{GLO} [LCI resul                                         | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 25c74161-<br>b62f-<br>4f52-<br>932d-<br>8b00856f<br>6990 | 2,4     | 2,2 | 3   | 2,8 | 2,6  |
| Yearly<br>Phthalocyanin<br>e green<br>consumption | 1 year average                                                                    | kg / year          | Phthalocyanine green <br>Technology mix  Production mix,<br>at plant  {GLO} [LCI resu                                            | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 1a1e92f9-<br>e5a8-<br>492b-<br>9d53-<br>1642c0aa<br>00ec | 2,5     | 2,3 | 2,9 | 2,9 | 2,65 |
| Yearly Plastic consumption                        | 1 year average                                                                    | kg / year          | Injection moulding  plastic<br>injection moulding  production<br>mix, at plant  for PP, HDPE and<br>PE {EU-28+EFTA} [LCI result] | http://lc<br>dn.think<br>step.co<br>m/Node    | ec9ca75e-<br>abdb-<br>4d2e-<br>9e18-<br>ca1f5709a<br>76d | 3       | 2   | 3   | 2   | 2,5  |
| Yearly Plastic<br>film<br>consumption             | 1 year average                                                                    | kg / year          | Plastic film , PE wrap   raw<br>material production, plastic<br>extrusion   production mix, at<br>plant   thickness: 25 µm,      | http://e<br>coinvent<br>.lca-                 | 0d2213f8-<br>a115-<br>4ce0-<br>a1d9-                     | 2       | 2   | 2   | 2   | 2    |

| Requirements                                        | for data collectio                                                                | n purposes         | Require                                                                                                                                    | ements for                                    | modelling pu                                             | urposes |     |    |   |      |
|-----------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|-----|----|---|------|
| Activity data<br>to be<br>collected                 | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                                 | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR | GR | Ρ | DQR  |
|                                                     |                                                                                   |                    | grammage: 0,023575 kg/m2 {EU-<br>28+EFTA} [LCI result]                                                                                     | data.co<br>m                                  | 0aa66aaf5<br>1ab                                         |         |     |    |   |      |
| Yearly<br>Polyacrylamid<br>e<br>consumption         | 1 year average                                                                    | kg / year          | Polyacrylamide production <br>technology mix  production mix,<br>at plant  100% active                                                     | http://e<br>coinvent<br>.lca-<br>data.co<br>m | d1101334<br>-074f-<br>4495-<br>86dd-<br>5bd91914<br>1f21 | 1       | 2   | 2  | 2 | 1,75 |
| Yearly<br>Polyacrylates<br>consumption              | 1 year average                                                                    | kg / year          | Polyacrylates in water solution<br>production   technology mix  <br>production mix, at plant   100%<br>active substance {RER} [LCI result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 9d0933de<br>-ac53-<br>476b-<br>beea-<br>bb9c0afd<br>e276 | 1       | 2   | 1  | 2 | 1,5  |
| Yearly<br>Polyaluminiu<br>m chloride<br>consumption | 1 year average                                                                    | kg / year          | Polyaluminium chloride<br>production   technology mix  <br>production mix, at plant   100                                                  | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 6934231e<br>-6394-<br>4565-<br>a020-<br>b9edcfa52<br>a40 | 1       | 2   | 2  | 2 | 1,75 |
| Yearly<br>Polycarboxyla<br>te<br>consumption        | 1 year average                                                                    | kg / year          | Polycarboxylate production <br>technology mix  production mix,<br>at plant  100% activ                                                     | http://e<br>coinvent<br>.lca-<br>data.co<br>m | dbdbd19e<br>-38e7-<br>47e7-<br>8894-<br>f6c51ee1a<br>90c | 1       | 2   | 1  | 2 | 1,5  |

| Requirements                                                                 | for data collectio                                                                | n purposes         | Require                                                                                                                                                                                            | ements for                                    | modelling pu                                             | irposes |     |     |     |      |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|-----|-----|-----|------|
| Activity data<br>to be<br>collected                                          | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                                                                                         | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR | GR  | Ρ   | DQR  |
| Yearly<br>Polyethylene<br>terephthalate<br>(PET)<br>granulate<br>consumption | 1 year average                                                                    | kg / year          | Polyethylene terephthalate (PET)<br>granulate secondary no metal<br>fraction   from p                                                                                                              | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 60dd82e4<br>-46d0-<br>4735-<br>a8ad-<br>94e708a2<br>b92a | 1       | 3   | 2   | 2   | 2    |
| Yearly<br>Polypropylene<br>consumption                                       | 1 year average                                                                    | kg / year          | Polypropylene (PP) fibers <br>polypropylene production,<br>spinning  production mix, at<br>plant  5% loss, 3.5 MJ electricity<br>{EU-28+EFTA} [LCI result]                                         | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 9caa347a-<br>4b90-<br>4dfc-8bf1-<br>849c1d82<br>ca81     | 2       | 2   | 2   | 2   | 2    |
| Yearly<br>Polyurethane<br>dispersion<br>consumption                          | 1 year average                                                                    | kg / year          | Polyurethane dispersion  <br>Technology mix   Production mix,<br>at plant   40% in water                                                                                                           | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 2a811ed4<br>-f819-<br>401d-<br>9acd-<br>556135fce<br>388 | 2,5     | 2,4 | 2,7 | 2,2 | 2,45 |
| Yearly<br>Polyurethane<br>flexible foam<br>consumption                       | 1 year average                                                                    | kg / year          | Polyurethane flexible foam<br>reaction of toluene diisocyanate<br>(TDI) with long-chain polyether<br>polyol and foaming   production<br>mix, at plant   18- 53 kg/m3 {EU-<br>28+EFTA} [LCI result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | c074c833-<br>f853-<br>4050-<br>934a-<br>8bac79ed<br>e282 | 2       | 1   | 1   | 2   | 1,5  |
| Yearly<br>Potassium<br>permanganat<br>e<br>consumption                       | 1 year average                                                                    | kg / year          | Potassium permanganate<br>production   technology mix  <br>production mix, at plant   100%<br>active substance {RER} [LCI result]                                                                  | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 253fbb51-<br>6d74-<br>44a1-<br>9719-                     | 1       | 2   | 2   | 2   | 1,75 |

| Requirements                                    | for data collectio                                                                | n purposes         | Requir                                                                                   | ements for                                    | modelling pu                                             | urposes |      |      |      |      |
|-------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|------|------|------|------|
| Activity data<br>to be<br>collected             | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                               | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR  | GR   | Ρ    | DQR  |
|                                                 |                                                                                   |                    |                                                                                          |                                               | bff4a25bc<br>560                                         |         |      |      |      |      |
| Yearly<br>Potassium<br>sulphate<br>consumption  | 1 year average                                                                    | kg / year          | Potassium sulphate production <br>technology mix  production mix,<br>at plant  100% ac   | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 6b7377bb<br>-c5c2-<br>4d0c-<br>84e4-<br>c9c3233c<br>0641 | 1       | 2    | 2    | 2    | 1,75 |
| Yearly Potato<br>protein<br>consumption         | 1 year average                                                                    | kg / year          | Potato protein  from wet milling,<br>production mix  at plant <br>{EU+28} [LCI result]   | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 1bd3bd2c<br>-a5dd-<br>4606-<br>8a11-<br>39d6a9ac<br>ed52 | 1,97    | 1,54 | 1,84 | 2,29 | 1,91 |
| Yearly Sawn<br>wood,<br>hardwood<br>consumption | 1 year average                                                                    | kg / year          | Sawn wood, hardwood  raw,<br>dried  at plant  per kg sawn<br>wood {EU-28+3} [LCI result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 7acf32a4-<br>3c31-<br>49bd-<br>8f91-<br>711ffc9a4<br>7c0 | 2,02    | 2,02 | 2,02 | 2,02 | 2,02 |
| Yearly Sawn<br>wood,<br>softwood<br>consumption | 1 year average                                                                    | kg / year          | Sawn wood, softwood  raw,<br>dried  at plant  per kg sawn<br>wood {EU-28+3} [LCI result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | fb96a30b-<br>09e9-<br>4a0e-<br>8ecd-<br>96dcb36f<br>30f5 | 2,02    | 2,02 | 2,02 | 2,02 | 2,02 |
| Yearly Soda<br>consumption                      | 1 year average                                                                    | kg / year          | Soda production   technology<br>mix   production mix, at plant                           | http://e<br>coinvent                          | 546d4097<br>-a453-                                       | 1       | 2    | 2    | 2    | 1,75 |

| Requirements                                | for data collection                                                               | n purposes         | Require                                                                                                                           | ements for                                    | modelling pu                                             | irposes |     |    |   |      |
|---------------------------------------------|-----------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|-----|----|---|------|
| Activity data<br>to be<br>collected         | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                        | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR | GR | Ρ | DQR  |
|                                             |                                                                                   |                    | 100% active substance {RER} [LCI<br>result]                                                                                       | .lca-<br>data.co<br>m                         | 4706-<br>ac17-<br>389325a0<br>4b6f                       |         |     |    |   |      |
| Yearly Sodium<br>bicarbonate<br>consumption | 1 year average                                                                    | kg / year          | Sodium bicarbonate production  <br>technology mix   production mix,<br>at plant   100% ac                                         | http://e<br>coinvent<br>.lca-<br>data.co<br>m | a90aa459<br>-4e30-<br>4b8d-<br>88d4-<br>9380496b<br>42ca | 1       | 2   | 2  | 2 | 1,75 |
| Yearly Sodium<br>chloride<br>consumption    | 1 year average                                                                    | kg / year          | Sodium chloride powder<br>production   technology mix  <br>production mix, at plant   100%<br>active substance {RER} [LCI result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | bd92e590<br>-afa8-<br>430c-<br>8089-<br>6491c321<br>63fb | 1       | 2   | 2  | 2 | 1,75 |
| Yearly Sodium<br>dithionite<br>consumption  | 1 year average                                                                    | kg / year          | Sodium dithionite production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]      | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 425f3c9d-<br>1501-<br>44a3-<br>8f51-<br>31c6fd7e<br>5f56 | 1       | 2   | 1  | 2 | 1,5  |
| Yearly Sodium<br>formate<br>consumption     | 1 year average                                                                    | kg / year          | Sodium formate production <br>technology mix  production mix,<br>at plant  100% active substance<br>{RER} [LCI result]            | http://e<br>coinvent<br>.lca-<br>data.co<br>m | a834d568<br>-3acd-<br>4bca-<br>a501-<br>3b984b89<br>e8ac | 1       | 2   | 2  | 2 | 1,75 |

| Requirements                                         | for data collectio                                                                | n purposes         | Require                                                                                                                                | ements for                                    | modelling pu                                             | urposes |     |    |   |      |
|------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|-----|----|---|------|
| Activity data<br>to be<br>collected                  | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                             | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR | GR | Ρ | DQR  |
| Yearly Sodium<br>hydrogen<br>sulphite<br>consumption | 1 year average                                                                    | kg / year          | Sodium hydrogen sulphite<br>production   technology mix  <br>production mix, at plant   100%<br>active substance {RER} [LCI result]    | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 8559b1de<br>-51ab-<br>430e-<br>93b8-<br>295759b8<br>53fe | 1       | 2   | 1  | 2 | 1,5  |
| Yearly Sodium<br>hydrosulphide<br>consumption        | 1 year average                                                                    | kg / year          | Sodium hydrosulphide<br>production   technology mix  <br>production mix, at plant   100%<br>active substance {GLO} [LCI<br>result]     | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 63d82b7d<br>-3547-<br>4240-<br>bc8e-<br>f2ec2832c<br>dee | 1       | 2   | 2  | 2 | 1,75 |
| Yearly Sodium<br>hydroxide<br>consumption            | 1 year average                                                                    | kg / year          | Sodium hydroxide production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]            | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 2ba49ead<br>-4683-<br>4671-<br>bded-<br>d52b8021<br>5e9e | 1       | 2   | 1  | 2 | 1,5  |
| Yearly Sodium<br>hypochlorite<br>consumption         | 1 year average                                                                    | kg / year          | Sodium hypochlorite production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]         | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 1bde1cf6-<br>9dd8-<br>4c78-<br>a05a-<br>07e49191<br>3641 | 1       | 2   | 1  | 2 | 1,5  |
| Yearly Sodium<br>percarbonate<br>consumption         | 1 year average                                                                    | kg / year          | Sodium percarbonate, powder<br>production   technology mix  <br>production mix, at plant   100%<br>active substance {RER} [LCI result] | http://e<br>coinvent<br>.lca-                 | 55a8e0ee<br>-2acd-<br>4167-<br>8d2e-                     | 1       | 2   | 2  | 2 | 1,75 |

| Requirements                                         | for data collectio                                                                | n purposes         | Require                                                                                                                            | ements for                                    | modelling pu                                             | irposes |     |    |   |      |
|------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|-----|----|---|------|
| Activity data<br>to be<br>collected                  | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                         | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR | GR | Р | DQR  |
|                                                      |                                                                                   |                    |                                                                                                                                    | data.co<br>m                                  | 95300f7df<br>eb7                                         |         |     |    |   |      |
| Yearly Sodium<br>silicate<br>consumption             | 1 year average                                                                    | kg / year          | Sodium silicate powder<br>production   technology mix  <br>production mix, at plant   100                                          | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 140b222f-<br>7fe3-4efb-<br>8692-<br>2b387054<br>960a     | 1       | 2   | 2  | 2 | 1,75 |
| Yearly Sodium<br>sulphate<br>consumption             | 1 year average                                                                    | kg / year          | Sodium sulphate production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]         | http://e<br>coinvent<br>.lca-<br>data.co<br>m | a9580b7f-<br>05dc-<br>4015-<br>84ad-<br>af12afc90<br>393 | 1       | 2   | 1  | 2 | 1,5  |
| Yearly Sodium<br>sulphite<br>consumption             | 1 year average                                                                    | kg / year          | Sodium sulphite production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]         | http://e<br>coinvent<br>.lca-<br>data.co<br>m | c61e11d7<br>-8040-<br>4aa1-<br>be9d-<br>432ba767<br>4b01 | 1       | 2   | 1  | 2 | 1,5  |
| Yearly Sodium<br>tripolyphosph<br>ate<br>consumption | 1 year average                                                                    | kg / year          | Sodium tripolyphosphate<br>production   technology mix  <br>production mix, at plant   100%<br>active substance {RER} [LCI result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 92be727d<br>-d244-<br>415c-<br>b207-<br>acd19462<br>c0c6 | 1       | 2   | 2  | 2 | 1,75 |
| Yearly Solid<br>board<br>consumption                 | 1 year average                                                                    | kg / year          | Solid board, bleached   kraft<br>pulping process, pulp pressing,<br>bleaching and drying   production                              | http://lc<br>dn.think                         | 0405501b<br>-e12f-<br>4d45-                              | 3       | 2   | 3  | 2 | 2,5  |

| Requirements                                      | for data collectio                                                                | n purposes         | Require                                                                                                                                                                    | ements for                                    | modelling pu                                             | irposes |     |    |   |      |
|---------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|-----|----|---|------|
| Activity data<br>to be<br>collected               | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                                                                 | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR | GR | Ρ | DQR  |
|                                                   |                                                                                   |                    | mix, at plant  >220 g/m2 {EU-<br>28+EFTA} [LCI result]                                                                                                                     | step.co<br>m/Node                             | ab51-<br>c5b1f5f12<br>620                                |         |     |    |   |      |
| Yearly Steel<br>cast<br>consumption               | 1 year average                                                                    | kg / year          | Steel cast part alloyed   electric<br>arc furnace route, from steel<br>scrap, secondary production  <br>single route, at plant   carbon<br>steel {EU-28+EFTA} [LCI result] | http://lc<br>dn.think<br>step.co<br>m/Node    | 366a0afd-<br>88e4-<br>45dc-<br>999a-<br>8acc20fd0<br>ead | 2       | 3   | 3  | 3 | 2,75 |
| Yearly Styrene consumption                        | 1 year average                                                                    | kg / year          | Styrene production   technology<br>mix   production mix, at plant  <br>100% active substance {GLO} [LCI<br>result]                                                         | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 5f7619b2-<br>662a-<br>4068-<br>a4b6-<br>Oda8bcf7<br>4fc8 | 1       | 2   | 2  | 2 | 1,75 |
| Yearly<br>Sulphated<br>acid esters<br>consumption | 1 year average                                                                    | kg / year          | Sulphated acid esters<br>production   technology mix  <br>production mix, at plant   100%                                                                                  | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 3f2f1197-<br>2035-<br>4373-<br>98f2-<br>b4660bfdf<br>c73 | 1       | 2   | 1  | 2 | 1,5  |
| Yearly<br>Sulphonated<br>fish oil<br>consumption  | 1 year average                                                                    | kg / year          | Sulphonated fish oil production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]                                            | http://e<br>coinvent<br>.lca-<br>data.co<br>m | e3826ae2<br>-30c2-<br>4197-<br>bb2e-<br>523dbb1d<br>1f5d | 1       | 2   | 2  | 2 | 1,75 |

| Requirements                                                             | for data collectio                                                                | n purposes         | Require                                                                                                                                             | ements for                                    | modelling pu                                             | irposes |     |    |   |      |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|-----|----|---|------|
| Activity data<br>to be<br>collected                                      | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                                          | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR | GR | Ρ | DQR  |
| Yearly<br>Sulphonated<br>rapeseed oil<br>consumption                     | 1 year average                                                                    | kg / year          | Sulphonated rapeseed oil<br>production   technology mix  <br>production mix, at plant   100%<br>active substance {RER} [LCI result]                 | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 1cae64ae-<br>5605-<br>4448-<br>9831-<br>269e7f38<br>a0a6 | 1       | 2   | 1  | 2 | 1,5  |
| Yearly<br>Sulphuric acid<br>consumption                                  | 1 year average                                                                    | kg / year          | Sulphuric acid production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]                           | http://e<br>coinvent<br>.lca-<br>data.co<br>m | eb6abe54<br>-7e5d-<br>4ee4-<br>b3f1-<br>08c1e220<br>ef94 | 5       | 1   | 1  | 2 | 2,25 |
| Yearly<br>Synthetic<br>fatliquors<br>consumption                         | 1 year average                                                                    | kg / year          | Synthetic fatliquors production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]                     | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 1a552557<br>-81d1-<br>4c1a-<br>92f2-<br>96520cdc<br>3fb7 | 1       | 2   | 1  | 2 | 1,5  |
| Yearly<br>Synthetic<br>tannins and<br>retanning<br>agents<br>consumption | 1 year average                                                                    | kg / year          | Syntetic tannins and retanning<br>agents production   technology<br>mix   production mix, at plant  <br>100% active substance {RER} [LCI<br>result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 74f41ad4-<br>acb0-<br>42a5-<br>b3e5-<br>95f5448c6<br>414 | 1       | 2   | 1  | 2 | 1,5  |
| Yearly<br>Tetrafluoroet<br>hane<br>consumption                           | 1 year average                                                                    | kg / year          | Tetrafluoroethane production <br>technology mix  production mix,<br>at plant  100% act                                                              | http://e<br>coinvent<br>.lca-                 | acfe37e4-<br>37e8-<br>4d95-<br>8354-                     | 1       | 2   | 2  | 2 | 1,75 |

| Requirements                                                   | for data collection                                                               | n purposes         | Require                                                                                                                                                                       | ements for                                    | modelling pu                                             | irposes |     |    |   |      |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|-----|----|---|------|
| Activity data<br>to be<br>collected                            | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                                                                    | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR | GR | Ρ | DQR  |
|                                                                |                                                                                   |                    |                                                                                                                                                                               | data.co<br>m                                  | 157f09f6e<br>37c                                         |         |     |    |   |      |
| Yearly<br>Thermal<br>energy from<br>natural gas<br>consumption | 1 year average                                                                    | MJ / year          | Thermal energy from natural gas <br>technology mix regarding firing<br>and flue gas cleaning  production<br>mix, at heat plant  MJ, 100%<br>efficiency {EU-28+3} [LCI result] | http://lc<br>dn.think<br>step.co<br>m/Node    | 81675341<br>-f1af-<br>44b0-<br>81d3-<br>d108caef5<br>c28 | 1       | 1   | 1  | 2 | 1,25 |
| Yearly<br>Titanium<br>dioxide<br>consumption                   | 1 year average                                                                    | kg / year          | Titanium dioxide production <br>technology mix  production mix,<br>at plant  100% active substance<br>{RER} [LCI result]                                                      | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 06fa4d7a-<br>939c-<br>4c42-<br>b177-<br>6b5bb45a<br>af94 | 1       | 1   | 1  | 2 | 1,25 |
| Yearly<br>Toluene<br>consumption                               | 1 year average                                                                    | kg / year          | Toluene production   technology<br>mix   production mix, at plant  <br>100% active substance {RER} [LCI<br>result]                                                            | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 5a7445fb-<br>8755-<br>4ef2-<br>947d-<br>e41996e7<br>c911 | 1       | 2   | 1  | 2 | 1,5  |
| Yearly<br>Triethylene<br>glycol<br>consumption                 | 1 year average                                                                    | kg / year          | Triethylene glycol production  <br>technology mix   production mix,<br>at plant   100% active substance<br>{RER} [LCI result]                                                 | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 87cc7437-<br>8adc-<br>4f69-b9af-<br>7d69e8dd<br>f1e3     | 1       | 2   | 2  | 2 | 1,75 |
| Yearly Urea-<br>formaldehyde                                   | 1 year average                                                                    | kg / year          | Urea-formaldehyde resin<br>production   technology mix                                                                                                                        | http://e<br>coinvent<br>.lca-                 | 68f33810-<br>f063-4f61-<br>899a-                         | 1       | 2   | 2  | 2 | 1,75 |

| Requirements                                           | for data collectio                                                                | n purposes         | Require                                                                                                           | ements for                                    | modelling pu                                             | urposes |      |      |      |      |
|--------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------|------|------|------|------|
| Activity data<br>to be<br>collected                    | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                        | Dataset<br>source<br>(i.e.<br>node)           | UUID                                                     | TiR     | TeR  | GR   | Ρ    | DQR  |
| resin<br>consumption                                   |                                                                                   |                    | production mix, at plant   100%<br>active substance {RER} [LCI result]                                            | data.co<br>m                                  | ea2bf18b<br>5a46                                         |         |      |      |      |      |
| Yearly Water,<br>completely<br>softened<br>consumption | 1 year average                                                                    | l / year           | Water, completely softened <br>technology mix  at user  per kg<br>water {EU-28+3} [LCI result]                    | http://lc<br>dn.think<br>step.co<br>m/Node    | 5acdcd80-<br>9e9a-<br>46fb-<br>8da7-<br>791a13bf<br>d831 | 2,42    | 2,04 | 2,02 | 2,02 | 2,12 |
| Yearly Water,<br>tap<br>consumption                    | 1 year average                                                                    | l / year           | Tap water  technology mix  at<br>user  per kg water {EU-28+3} [LCI<br>result]                                     | http://lc<br>dn.think<br>step.co<br>m/Node    | 212b8494<br>-a769-<br>4c2e-<br>8d82-<br>9a6ef61b<br>aad7 | 2,42    | 2,04 | 2,02 | 2,02 | 2,12 |
| Yearly Wax<br>consumption                              | 1 year average                                                                    | kg / year          | Wax production   technology<br>mix   production mix, at plant  <br>100% active substance                          | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 697889d5<br>-d952-<br>45eb-<br>9e46-<br>c39046c3<br>5522 | 5       | 1    | 2    | 2    | 2,5  |
| Yearly Xylene consumption                              | 1 year average                                                                    | kg / year          | Xylene production   technology<br>mix   production mix, at plant  <br>100% active substance {RER} [LCI<br>result] | http://e<br>coinvent<br>.lca-<br>data.co<br>m | 33f98fa5-<br>91e8-<br>4270-aff6-<br>bd350985<br>15fe     | 1       | 2    | 1    | 2    | 1,5  |
|                                                        |                                                                                   |                    | Outputs:                                                                                                          |                                               |                                                          |         |      |      |      |      |
| Yearly<br>Incineration                                 | 1 year average                                                                    | kg / year          | Waste incineration of hazardous waste   waste-to-energy plant                                                     | http://lc<br>dn.think                         | fa158634-<br>c471-                                       | 2       | 1    | 2    | 1    | 1,5  |

| Requirements for data collection purposes |                                                                                   |                    | Requirements for modelling purposes                                                                                                                                                                                                                 |                                            |                                                          |     |     |    |   |     |
|-------------------------------------------|-----------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|-----|-----|----|---|-----|
| Activity data<br>to be<br>collected       | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc.) | Unit of<br>measure | Default dataset to be used                                                                                                                                                                                                                          | Dataset<br>source<br>(i.e.<br>node)        | UUID                                                     | TiR | TeR | GR | Ρ | DQR |
| of hazardous<br>waste                     |                                                                                   |                    | with dry flue gas treatment,<br>including transport and pre-<br>treatment  production mix, at<br>consumer  hazardous waste {EU-<br>28+EFTA} [LCI result]                                                                                            | step.co<br>m/Node                          | 4b0e-afef-<br>407d1073<br>b086                           |     |     |    |   |     |
| Yearly<br>Incineration<br>of solid waste  | 1 year average                                                                    | kg / year          | Waste incineration of municipal<br>solid waste   waste-to-energy<br>plant with dry flue gas treatment,<br>including transport and pre-<br>treatment   production mix, at<br>consumer   municipal solid waste<br>{EU-28+EFTA} [LCI result]           | http://lc<br>dn.think<br>step.co<br>m/Node | 2f07be1f-<br>d11a-<br>46ac-<br>b4f0-<br>49c5f28b<br>5b93 | 2   | 1   | 2  | 1 | 1,5 |
| Yearly Landfill<br>of inert<br>material   | 1 year average                                                                    | kg / year          | Landfill of inert material (other<br>materials)   landfill including<br>leachate treatment and with<br>transport without collection and<br>pre-treatment   production mix<br>(region specific sites), at landfill<br>site {EU-28+EFTA} [LCI result] | http://lc<br>dn.think<br>step.co<br>m/Node | 448ab0f1-<br>4dd6-<br>4d85-<br>b654-<br>35736bb7<br>72f4 | 2   | 2   | 2  | 2 | 2   |
| Yearly<br>Treatment of<br>wastewater      | 1 year average                                                                    | kg / year          | Treatment of residential<br>wastewater, large plant   waste<br>water treatment including sludge<br>treatment   production mix, at<br>plant   1m3 of waste water<br>treated {EU-28+EFTA} [LCI result]                                                | http://lc<br>dn.think<br>step.co<br>m/Node | f5ec4a19-<br>70da-<br>406d-<br>be31-<br>a7eeef2f8<br>372 | 2   | 2   | 2  | 2 | 2   |

322 The applicant shall report the DQR values (for each criterion + total) for all the datasets used.

| 323 1 | Table 15 | Mandatory | company-specific | emissions |
|-------|----------|-----------|------------------|-----------|
|-------|----------|-----------|------------------|-----------|

| Emissions /<br>resources     | Elementary flow                              | Frequency of measurement | Default measurement method                                                                                     |
|------------------------------|----------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|
| Chlorides to<br>water        | Chlorides,<br>unspecified                    | Weekly                   | determined from salinity, measured from<br>conductivity, ISO 7888:1985 or EN 27888:1994<br>or ISO 10304/1:2007 |
| Chromium to<br>water         | Chromium III                                 | Weekly                   | EN ISO 15587:2002, EN ISO 11885:2010                                                                           |
| COD to water                 | COD, Chemical<br>Oxygen Demand               | Weekly                   | ISO 6060:1989, same as UNE 77004:2002                                                                          |
| Nitrogen to<br>water         | Nitrogen, total                              | Weekly                   | EN 25663:1994                                                                                                  |
| Particulate<br>matter to air | Particles <sup>19</sup>                      | Weekly                   | ISO 10155: 1995                                                                                                |
| Sulphates to<br>water        | Sulfate                                      | Weekly                   | ISO 10304/1:2007 or CWA EPA chemical test method n. 375.2                                                      |
| Sulphides to<br>water        | Sulfide                                      | Weekly                   | ISO 13358:1997 or ASTM D4658 or DIN-38405-<br>26                                                               |
| Suspended solids to water    | Total suspended solids, unspecified          | Weekly                   | EN 872:2006                                                                                                    |
| VOC to air                   | Non-methane<br>volatile organic<br>compounds | 6 or 12<br>months        | EN 12619:2013, EN 13526:2002                                                                                   |

324 See excel file named "Leather PEFCR final version - Life cycle inventory" (downloadable at

325 <u>http://ec.europa.eu/environment/eussd/smgp/PEFCR\_OEFSR.htm</u>) for the list of all company-specific data
 326 to be collected.

327 The following organisations have contributed to the provision of better proxy data for chemicals: Lanxess

328 Deutschland GmbH, Saviola Holding SRL, Silvateam S.p.A. and Stahl Palazzolo s.r.l. and the support of

Associazione Conciatori S. Croce sull'Arno, Associazione Italiana Chimici del Cuoio (AICC), Consorzio

330 Conciatori di Ponte a Egola, Consorzio Vera Pelle Italiana Conciata al Vegetale, Consorzio Vero Cuoio Italiano

and Unione Nazionale Produttori Italiani Ausiliari Conciari (UNPAC).

## **5.2 List of processes expected to be run by the company**

All processes expected to be run by the company, for which company-specific data are mandatory, are

reported in chapter 5.1 List of mandatory company-specific data.

<sup>&</sup>lt;sup>19</sup> The applicant shall collect data related to particles of any size emitted to air by the company.

## **5.3 Data gaps**

Unless primary data on chemicals production and animal farming of appropriate quality (as defined in the
 PEF Recommendation) are made available from producers, to assure an appropriate overall quality of the

- PEF study and the comparability of the results, default proxies as in ANNEX 7 Default values shall be used.
- In case a chemical is not included in ANNEX 7 Default values, the following hierarchic approach shall be
   followed to model it:
- To use the same PEF-compliant datasets if available in a free or commercial source not part of a Life Cycle Data Network node created in the context of the EF pilot phase LCI tendering process;
- To use another PEF-compliant dataset existing either in one of the Life Cycle Data Network nodes
   created in the context of the EF pilot phase LCI tendering process or in a free or commercial source
   dataset and considered to be a good proxy for the missing dataset.
- 346 For background data that should be used for the upstream processes see chapter 6.
- 347 If primary data or most appropriate datasets are not available, default datasets reported in chapter 6 shall
  348 be used. Any deviation shall be clearly reported in the PEF report and justified.

## 349 **5.4 Data quality requirements**

The data quality of each dataset and the total EF study shall be calculated and reported. The calculation of the DQR shall be based on the following formula with 4 criteria:

352 
$$DQR = \frac{\overline{Te_R} + \overline{G_R} + \overline{Ti_R} + \overline{P}}{4}$$
 [Equation 1]

Where TeR is the Technological-Representativeness, GR is the Geographical-Representativeness, TiR is the Time-Representativeness, and P is the Precision/uncertainty. The representativeness (technological, geographical and time-related) characterises to what degree the processes and products selected are depicting the system analysed, while the precision indicates the way the data is derived and related level of uncertainty.

The next chapters provide tables with the criteria to be used for the semi-quantitative assessment of each criterion. If a dataset is constructed with company-specific activity data, company-specific emission data and secondary sub-processes, the DQR of each shall be assessed separately.

## 361 **5.4.1 Company-specific datasets**

The score of criterion P cannot be higher than 3 while the score for TiR, TeR, and GR cannot be higher than 2 (the DQR score shall be ≤1.6). The DQR shall be calculated at the level-1 disaggregation, before any aggregation of sub-processes or elementary flows is performed. The DQR of company-specific datasets shall be calculated as following:

- 1) Select the most relevant sub-processes and direct elementary flows that account for at least 80% of the
- total environmental impact of the company-specific dataset, listing them from the most contributing to theleast contributing one.
- 2) Calculate the DQR criteria TeR, TiR, GR and P for each most relevant process and each most relevant direct
   elementary flow. The values of each criterion shall be assigned based on Table 16.
- 371 2.a) Each most relevant elementary flow consists of the amount and elementary flow naming (e.g. 372 40 g carbon dioxide). For each most relevant elementary flow, evaluate the 4 DQR criteria named 373 Te<sub>R-EF</sub>, Ti<sub>R-EF</sub>, G<sub>R-EF</sub>, P<sub>EF</sub> in NOTE: in case the newly developed dataset has most relevant processes filled 374 in by non-EF compliant datasets (and thus without DQR), then these datasets cannot be included in 375 step 4 and 5 of the DQR calculation. (1) The weight of step 3 shall be recalculated for the EF-compliant 376 datasets only. Calculate the environmental contribution of each most-relevant EF compliant process 377 and elementary flow to the total environmental impact of all most-relevant EF compliant processes 378 and elementary flows, in %. Continue with step 4 and 5. (2) The weight of the non-EF compliant 379 dataset (calculated in step 3) shall be used to increase the DQR criteria and total DQR accordingly. 380 For example:
- Process 1 carries 30% of the total dataset environmental impact and is ILCD entry level compliant.
   The contribution of this process to the total of 80% is 37.5% (the latter is the weight to be used).
- Process 1 carries 50% of the total dataset environmental impact and is EF compliant. The contribution of this process to all most-relevant EF compliant processes is 100%. The latter is the weight to be used in step 4.
- After step 5, the parameters  $\overline{\text{Te}_{\text{R}}}$ ,  $\overline{\text{G}_{\text{R}}}$ ,  $\overline{\text{Ti}_{\text{R}}}$ ,  $\overline{\text{P}}$  and the total DQR shall be multiplied with 1.375.
- 387It shall be evaluated for example, the timing of the flow measured, for which technology the flow388was measured and in which geographical area.
- 3892.b) Each most relevant process is a combination of activity data and the secondary dataset used.390For each most relevant process, the DQR is calculated by the applicant of the PEFCR as a combination391of the 4 DQR criteria for activity data and the secondary dataset: (i) Ti<sub>R</sub> and P shall be evaluated at392the level of the activity data (named Ti<sub>R-AD</sub>, P<sub>AD</sub>) and (ii) Te<sub>R</sub>, Ti<sub>R</sub> and G<sub>R</sub> shall be evaluated at the level393of the secondary dataset used (named Te<sub>R-SD</sub>, Ti<sub>R-SD</sub> and G<sub>R-SD</sub>). As Ti<sub>R</sub> is evaluated twice, the394mathematical average of Ti<sub>R-AD</sub> and Ti<sub>R-SD</sub> represents the Ti<sub>R</sub> of the most relevant process.
- 3) Calculate the environmental contribution of each most-relevant process and elementary flow to the total
  environmental impact of all most-relevant processes and elementary flows, in % (weighted using 13 EF
  impact categories, with the exclusion of the 3 toxicity-related ones). For example, the newly developed
  dataset has only two most relevant processes, contributing in total to 80% of the total environmental impact
  of the dataset:
- Process 1 carries 30% of the total dataset environmental impact. The contribution of this process to
   the total of 80% is 37.5% (the latter is the weight to be used).
- Process 1 carries 50% of the total dataset environmental impact. The contribution of this process to the total of 80% is 62.5% (the latter is the weight to be used).

404 4) Calculate the Te<sub>R</sub>, Ti<sub>R</sub>, G<sub>R</sub> and P criteria of the newly developed dataset as the weighted average of each 405 criterion of the most relevant processes and direct elementary flows. The weight is the relative contribution 406 (in %) of each most relevant process and direct elementary flow calculated in step 3.

407 5) The applicant of the PEFCR shall the total DQR of the newly developed dataset using the equation 2, where 408  $Te_R, \overline{G_R}, \overline{Ti_R}, \overline{P}$  are the weighted average calculated as specified in point 4).

409 
$$DQR = \frac{\overline{Te_R} + \overline{G_R} + \overline{Ti_R} + \overline{P}}{4}$$
 [Equation 2]

NOTE: in case the newly developed dataset has most relevant processes filled in by non-EF compliant datasets (and thus without DQR), then these datasets cannot be included in step 4 and 5 of the DQR calculation. (1) The weight of step 3 shall be recalculated for the EF-compliant datasets only. Calculate the environmental contribution of each most-relevant EF compliant process and elementary flow to the total environmental impact of all most-relevant EF compliant processes and elementary flows, in %. Continue with step 4 and 5. (2) The weight of the non-EF compliant dataset (calculated in step 3) shall be used to increase the DQR criteria and total DQR accordingly. For example:

- Process 1 carries 30% of the total dataset environmental impact and is ILCD entry level compliant.
   The contribution of this process to the total of 80% is 37.5% (the latter is the weight to be used).
- Process 1 carries 50% of the total dataset environmental impact and is EF compliant. The contribution of this process to all most-relevant EF compliant processes is 100%. The latter is the weight to be used in step 4.
- After step 5, the parameters  $\overline{\text{Te}_{\text{R}}}$ ,  $\overline{\text{G}_{\text{R}}}$ ,  $\overline{\text{Ti}_{\text{R}}}$ ,  $\overline{\text{P}}$  and the total DQR shall be multiplied with 1.375.

|   | $P_{EF}$ and $P_{AD}$                                                                       | Ti <sub>R-EF</sub> and Ti <sub>R-AD</sub>                                                                                        | Ti <sub>R-SD</sub>                                                                                                      | $Te_{R-EF}$ and $Te_{R-SD}$                                                                                                          | $G_{R-EF}$ and $G_{R-SD}$                                                                                                               |
|---|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Measured /<br>calculated <u>and</u><br>externally verified                                  | The data refers to<br>the most recent<br>annual<br>administration<br>period with respect<br>to the EF report<br>publication date | The EF report<br>publication date<br>happens within<br>the time validity<br>of the dataset                              | The elementary<br>flows and the<br>secondary<br>dataset reflect<br>exactly the<br>technology of<br>the newly<br>developed<br>dataset | The data(set)<br>reflects the<br>exact geography<br>where the<br>process<br>modelled in the<br>newly created<br>dataset takes<br>place  |
| 2 | Measured /<br>calculated and<br>internally verified,<br>plausibility checked<br>by reviewer | The data refers to<br>maximum 2 annual<br>administration<br>periods with<br>respect to the EF<br>report publication<br>date      | The EF report<br>publication date<br>happens not<br>later than 2<br>years beyond<br>the time validity<br>of the dataset | The elementary<br>flows and the<br>secondary<br>dataset is a<br>proxy of the<br>technology of<br>the newly<br>developed<br>dataset   | The data(set)<br>partly reflects<br>the geography<br>where the<br>process<br>modelled in the<br>newly created<br>dataset takes<br>place |
| 3 | Measured /<br>calculated /                                                                  | The data refers to<br>maximum three                                                                                              | Not applicable                                                                                                          | Not applicable                                                                                                                       | Not applicable                                                                                                                          |

#### 423 Table 16 How to assess the value of the DQR criteria for datasets with company-specific information

|         | P <sub>EF</sub> and P <sub>AD</sub>                                                                                                                      | Ti <sub>R-EF</sub> and Ti <sub>R-AD</sub>                                                   | Ti <sub>R-SD</sub> | $Te_{R-EF}$ and $Te_{R-SD}$ | $G_{R-EF}$ and $G_{R-SD}$ |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------|-----------------------------|---------------------------|
|         | literature and<br>plausibility not<br>checked by<br>reviewer OR<br>Qualified estimate<br>based on<br>calculations<br>plausibility checked<br>by reviewer | annual<br>administration<br>periods with<br>respect to the EF<br>report publication<br>date |                    |                             |                           |
| 4-<br>5 | Not applicable                                                                                                                                           | Not applicable                                                                              | Not applicable     | Not applicable              | Not applicable            |

## 424 5.5 Data needs matrix (DNM)

All processes required to model the product and outside the list of mandatory company-specific (listed in section 5.1 List of mandatory company-specific data) shall be evaluated using the Data Needs Matrix (see Table 17). The DNM shall be used by the PEFCR applicant to evaluate which data is needed and shall be used within the modelling of its PEF, depending on the level of influence the applicant (company) has on the specific process. The following three cases are found in the DNM and are explained below:

- 430 1. **Situation 1**: the process is run by the company applying the PEFCR
- 431 2. Situation 2: the process is not run by the company applying the PEFCR but the company has access
  432 to (company-)specific information.
- 433 3. Situation 3: the process is not run by the company applying the PEFCR and this company does not
  434 have access to (company-)specific information.
- 435 Table 17 Data Needs Matrix (DNM) . \*Disaggregated datasets shall be used.

|                                                                                            |             | Most relevant process                                        | Other process                                                                                                           |
|--------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Situation 1: process run                                                                   | Option<br>1 | create a company specific dataset<br>level 1 (D              | (as requested in the PEFCR) and<br>c partially disaggregated at least at<br>PQR ≤1.6).<br>c (for each criteria + total) |
| by the company<br>applying the PEFCR                                                       | Option<br>2 |                                                              | Use default secondary dataset<br>in PEFCR, in aggregated form<br>(DQR ≤3.0).<br>Use the default DQR values              |
| Situation 2: process not<br>run by the company<br>applying the PEFCR but<br>with access to |             | create a company specific dataset<br>level 1 (D              | (as requested in the PEFCR) and<br>partially disaggregated at least at<br>pQR ≤1.6).<br>(for each criteria + total)     |
| (company-)specific<br>information                                                          | Option<br>2 | Use company-specific activity data for transport (distance), |                                                                                                                         |

|                                                                                               |             | Most relevant process                                                                                                                                                                                                          | Other process                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                               |             | and substitute the sub-<br>processes used for electricity<br>mix and transport with supply-<br>chain specific PEF compliant<br>datasets (DQR ≤3.0).*<br>Re-evaluate the DQR criteria<br>within the product specific<br>context | Use company-specific activity                                                                                                                                                                                                                        |
|                                                                                               | Option<br>3 |                                                                                                                                                                                                                                | Use company-specific activity<br>data for transport (distance),<br>and substitute the sub-<br>processes used for electricity<br>mix and transport with supply-<br>chain specific PEF compliant<br>datasets (DQR ≤4.0).<br>Use the default DQR values |
| Situation 3: process not<br>run by the company<br>applying the PEFCR and<br>without access to | Option<br>1 | Use default secondary dataset,<br>in aggregated form (DQR ≤3.0).<br>Re-evaluate the DQR criteria<br>within the product specific<br>context                                                                                     |                                                                                                                                                                                                                                                      |
| (company)-specific<br>information                                                             | Option<br>2 |                                                                                                                                                                                                                                | Use default secondary dataset<br>in PEFCR, in aggregated form<br>(DQR ≤4.0)<br>Use the default DQR values                                                                                                                                            |

## 436 **5.5.1 Processes in situation 1**

- 437 For each process in situation 1 there are two possible options:
- The process is in the list of most relevant processes as specified in the PEFCR or is not in the list of
   most relevant process, but still the company wants to provide company specific data (option 1);
- The process is not in the list of most relevant processes and the company prefers to use a secondary dataset (option 2).

## 442 Situation 1/Option 1

443 For all processes run by the company and where the company applying the PEFCR uses company specific

data. The DQR of the newly developed dataset shall be evaluated as described in section 5.4.1 Company specific datasets.

## 446 Situation 1/Option 2

For the non-most relevant processes only, if the applicant decides to model the process without collecting company-specific data, then the applicant shall use the secondary dataset listed in the PEFCR together with its default DQR values listed here.

450 If the default dataset to be used for the process is not listed in the PEFCR, the applicant of the PEFCR shall 451 take the DQR values from the metadata of the original dataset.

## 452 **5.5.2 Processes in situation 2**

453 When a process is not run by the company applying the PEFCR, but there is access to company-specific data, 454 then there are two possible options:

- The company applying the PEFCR has access to extensive supplier-specific information and wants to
   create a new EF-compliant dataset<sup>20</sup> (Option 1);
- The company has some supplier-specific information and want to make some minimum changes
   (Option 2).
- The process is not in the list of most relevant processes and the company prefers to use a secondary dataset (option 3).

#### 461 Situation 2/Option 1

For all processes run by the company and where the company applying the PEFCR uses company specific data. The DQR of the newly developed dataset shall be evaluated as described in section 5.4.1 Companyspecific datasets.

#### 465 Situation 2/Option 2

466 Company-specific activity data for transport are used and the sub-processes used for electricity mix and 467 transport with supply-chain specific PEF compliant datasets are substituted starting from the default 468 secondary dataset provided in the PEFCR.

Please note that, the PEFCR lists all dataset names together with the UUID of their aggregated dataset. Forthis situation, the disaggregated version of the dataset is required.

- 471 The applicant of the PEFCR shall make the DQR values of the dataset used context-specific by re-evaluating
- 472 Te<sub>R</sub> and Ti<sub>R</sub> using the table(s) provided Table 18. The criteria  $G_R$  shall be lowered by 30%<sup>21</sup> and the criteria P
- 473 shall keep the original value.

<sup>&</sup>lt;sup>20</sup> The review of the newly created dataset is optional

 $<sup>^{21}</sup>$  In situation 2, option 2 it is proposed to lower the parameter G<sub>R</sub> by 30% in order to incentivize the use of company specific information and reward the efforts of the company in increasing the geographic representativeness of a secondary dataset through the substitution of the electricity mixes and of the distance and means of transportation.

## 474 Situation 2/Option 3

- For the non-most relevant processes, the applicant may use the corresponding secondary dataset listed in the PEFCR together with its DQR values.
- 477 If the default dataset to be used for the process is not listed in the PEFCR, the applicant of the PEFCR shall
- 478 take the DQR values from the original dataset.
- Table 18 How to assess the value of the DQR criteria when secondary datasets are used.

|   | TiR                                                                                                            | TeR                                                                                                           | G <sub>R</sub>                                                                                                                                                                                                                 |
|---|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | The EF report publication<br>date happens within the<br>time validity of the dataset                           | The technology used in<br>the EF study is exactly the<br>same as the one in scope<br>of the dataset           | The process modelled in the EF study takes place in the country the dataset is valid for                                                                                                                                       |
| 2 | The EF report publication<br>date happens not later<br>than 2 years beyond the<br>time validity of the dataset | The technologies used in<br>the EF study is included in<br>the mix of technologies in<br>scope of the dataset | The process modelled in the EF study<br>takes place in the geographical region<br>(e.g. Europe) the dataset is valid for                                                                                                       |
| 3 | The EF report publication<br>date happens not later<br>than 4 years beyond the<br>time validity of the dataset | The technologies used in<br>the EF study are only<br>partly included in the<br>scope of the dataset           | The process modelled in the EF study<br>takes place in one of the geographical<br>regions the dataset is valid for                                                                                                             |
| 4 | The EF report publication<br>date happens not later<br>than 6 years beyond the<br>time validity of the dataset | The technologies used in<br>the EF study are similar to<br>those included in the<br>scope of the dataset      | The process modelled in the EF study<br>takes place in a country that is not<br>included in the geographical region(s)<br>the dataset is valid for, but sufficient<br>similarities are estimated based on<br>expert judgement. |
| 5 | The EF report publication<br>date happens later than 6<br>years after the time validity<br>of the dataset      | The technologies used in<br>the EF study are different<br>from those included in the<br>scope of the dataset  | The process modelled in the EF study<br>takes place in a different country than<br>the one the dataset is valid for                                                                                                            |

## 480 **5.5.3 Processes in situation 3**

- 481 When a process is not run by the company applying the PEFCR and the company does not have access to 482 company-specific data, there are two possible options:
- It is in the list of most relevant processes (situation 3, option 1)
- It is not in the list of most relevant processes (situation 3, option 2)

## 485 Situation 3/Option 1

- 486 In this case, the applicant of the PEFCR shall make the DQR values of the dataset used context-specific by re-
- 487 evaluating  $Te_R$ ,  $Ti_R$  and  $G_r$ , using the table(s) provided. The criteria P shall keep the original value.

## 488 Situation 3/Option 2

For the non-most relevant processes, the applicant shall use the corresponding secondary dataset listed inthe PEFCR together with its DQR values.

491 If the default dataset to be used for the process is not listed in the PEFCR, the applicant of the PEFCR shall492 take the DQR values from the original dataset.

## 493 **5.6 Which datasets to use?**

The secondary datasets to be used by the applicant are those listed in this PEFCR. Whenever a dataset needed to calculate the PEF-profile is not among those listed in this PEFCR, then the applicant shall choose between the following options (in hierarchical order):

| 497 | <ul> <li>Use an EF-compliant dataset available on one of the following nodes:</li> </ul>                  |
|-----|-----------------------------------------------------------------------------------------------------------|
| 498 | <ul> <li><u>http://eplca.jrc.ec.europa.eu/EF-node</u></li> </ul>                                          |
| 499 | o <u>http://lcdn.blonkconsultants.nl</u>                                                                  |
| 500 | <ul> <li><u>http://ecoinvent.lca-data.com</u></li> </ul>                                                  |
| 501 | o <u>http://lcdn-cepe.org</u>                                                                             |
| 502 | <ul> <li><u>https://lcdn.quantis-software.com/PEF/</u></li> </ul>                                         |
| 503 | o <u>http://lcdn.thinkstep.com/Node</u>                                                                   |
| 504 | <ul> <li>Use an EF-compliant dataset available in a free or commercial source;</li> </ul>                 |
| 505 | • Use another EF-compliant dataset considered to be a good proxy. In such case this information shall     |
| 506 | be included in the "limitation" section of the PEF report.                                                |
| 507 | • Use an ILCD-entry level-compliant dataset that has been modelled according to the modelling             |
| 508 | requirements included in the Guidance version 6.3. In such case this information shall be included in     |
| 509 | the "limitations" section of the PEF report.                                                              |
| 510 | • Use an ILCD-entry level-compliant dataset. In such case this information shall be included in the "data |
| 511 | gap" section of the PEF report.                                                                           |

512 5.7 How to calculate the average DQR of the study

513 In order to calculate the average DQR of the EF study, the applicant shall calculate separately the TeR, TiR, 514 GR and P for the EF study as the weighted average of all most relevant processes, based on their relative 515 environmental contribution to the total single score (excluding the 3 toxicity-related ones). The calculation 516 rules explained in 5.4 Data quality requirements shall be used.

## 517 **5.8 Allocation rules**

518 The leather life cycle, as it results from the allocation rules specifically set up for this product category in the 519 PEFCR Guidance version 6.3, includes upstream phases of livestock breeding and slaughter. Therefore, in the 520 leather life cycle, multi-functionality occurs at different life cycle stages:

• At the farming level, where meat and milk are produced;

- At the slaughterhouse level, where fresh meat and edible offal, raw hides and skins and other co &
   by-products are produced;
- At the tannery level, where finished grain split leather and other co-products (i.e. flesh splits, wool, etc.) are produced
- 526 To manage multi-functionality, the approaches reported below shall be applied. Approaches for farming and
- 527 slaughtering are taken from PEFCR guidance version 6.3.

### 528 Table 19 Allocation rules

| Process                      | Allocation<br>rule | Modelling instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bovine farming Biophysical   |                    | <ul> <li>Subdivision shall be used for processes that can be directly attributed to certain outputs (e.g. energy use and emissions related to milking processes). When the processes cannot be subdivided due to the lack of separate data or because technically impossible, the upstream burden, e.g. feed production, shall be allocated to farm outputs using a biophysical allocation method. Default values shall be used by PEF studies unless company-specific data are collected. The change of allocation factors is allowed only when company-specific data are collected and used for the farm module. In case generic data are used for the farm module, no change of allocation factors is allowed and the ones listed below shall be used:</li> <li>Milk: 88,0%</li> <li>Live animal to slaughter: 12,0%</li> </ul>                |
| Caprine and<br>ovine farming | Biophysical        | Subdivision shall be used for processes that can be directly attributed<br>to certain outputs (e.g. energy use and emissions related to milking<br>processes). When the processes cannot be subdivided due to the lack<br>of separate data or because technically impossible, the upstream<br>burden, e.g. feed production, shall be allocated to farm outputs using a<br>biophysical allocation method. Default values shall be used by PEF<br>studies unless company-specific data are collected. The change of<br>allocation factors is allowed only when company-specific data are<br>collected and used for the farm module. In case generic data are used<br>for the farm module, no change of allocation factors is allowed and the<br>ones listed below shall be used:<br>Milk: 73,85%<br>Wool: 23,64%<br>Live animal to slaughter: 2,51% |
| Bovine<br>slaughtering       | Economic           | Subdivision shall be used for processes that can be directly attributed to certain outputs. When the processes cannot be subdivided, the remaining (e.g. excluding that already allocated to milk for milk producing system and/or to wool for wool producing system)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Process                              | Allocation<br>rule           | Modelling instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                              | <ul> <li>upstream burden shall be allocated to slaughterhouse and rendering outputs using the economic allocation method. The default values that shall be used for economic allocation are reported below:</li> <li>Fresh meat and edible offal: 92,9%</li> <li>Hides and skins: 3,5%</li> <li>Food grade fat: 1,8%</li> <li>Food grade bones: 1,0%</li> <li>Cat. 3 slaug. By-products: 0,8%</li> <li>Cat 1/2 material &amp; waste: 0,0%</li> </ul> No change of allocation factors is allowed.                                                                                                                                                                                                                                      |
| Caprine and<br>ovine<br>slaughtering | Economic                     | Subdivision shall be used for processes that can be directly attributed<br>to certain outputs. When the processes cannot be subdivided, the<br>remaining (e.g. excluding that already allocated to milk for milk<br>producing system and/or to wool for wool producing system)<br>upstream burden shall be allocated to slaughterhouse and rendering<br>outputs using the economic allocation method. The default values that<br>shall be used for economic allocation are reported below:<br>Fresh meat and edible offal: 97,8%<br>Hides and skins: 1,6%<br>Cat. 3 slaug. By-products: 0,618%<br>Food grade fat: 0,19%<br>Food grade bones: 0,0127%<br>Cat 1/2 material & waste: 0,0%<br>No change of allocation factors is allowed. |
| Bovine raw<br>hides tanning          | Hide<br>substance<br>content | Allocation in leather tanning processes between full grain leather and<br>its co-products shall be based on the hide substance content. See<br>Table 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Caprine skins<br>tanning             | Hide<br>substance<br>content | Allocation in leather tanning processes between full grain leather and its co-products shall be based on the hide substance content. See Table 21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ovine skins<br>tanning               | Hide<br>substance<br>content | Allocation in leather tanning processes between full grain leather and<br>its co-products shall be based on the hide substance content. See<br>Table 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

529 The use of allocation factors deviating from the default ones provided in the present document shall be

subject to strict review by the verifier, since it greatly influence the results of the study. Indeed, if it can be

531 demonstrated that the hides or skins are obtained from animals that have been killed for eradicating a

disease or that died at the farm or that were stillborn, then such animal by-products are legally treated as

533 waste and they shall carry a 0% allocation.

534 The calculation of simplified sets of average and approximate allocation factors was carried out on the basis

of the mass balance of the biogenic and bio-based Protein-Nitrogen content (g-N or %) Hide Substance) in

the co-products (grain and flesh/middle splits), as well as by-products (hair or wool recovered) and residues

- 537 (bio-solids and solid waste) generated during the transformation of input processing materials to finished
- 538 leather and Tannery effluent treatment, respectively.
- 539 The quantities of co-products, by-products and waste can vary significantly as a function of specific input
- 540 material, output leather article and tannery. The thickness of the output pelts and leathers can result in
- 541 significant variations of allocated hide substance content.
- 542 Allocation factors are reported in the following tables.

## 543 Table 20 Allocation factors for bovine leather

| From         | Raw                                                    |                                                        |                                                                 | Semi-<br>processed<br>products                                  |                                                 | Raw                                      |                                          |                          |
|--------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|------------------------------------------|------------------------------------------|--------------------------|
| То           | Semi-<br>processed<br>products,<br>split, hair<br>burn | Semi-<br>processed<br>products,<br>split, hair<br>save | Semi-<br>processed<br>products, full<br>substance,<br>hair burn | Semi-<br>processed<br>products, full<br>substance,<br>hair save | Crust or<br>Finished<br>Grain Split<br>Leathers | Finished<br>leather, split,<br>hair save | Finished<br>leather, split,<br>hair burn | Finished Sole<br>Leather |
| Grain Splits | 64%                                                    | 60%                                                    | 100%                                                            | 91%                                                             | 100%                                            | 60%                                      | 63%                                      | 100%                     |
| Flesh Splits | 36%                                                    | 31%                                                    | -                                                               | -                                                               | -                                               | 31%                                      | 37%                                      | -                        |
| Hair         | -                                                      | 9%                                                     | -                                                               | 9%                                                              | -                                               | 9%                                       | -                                        | -                        |

## 544 Table 21 Allocation factors for caprine leather

| From             | Ra                                                     | Semi-processed products                                |                  |
|------------------|--------------------------------------------------------|--------------------------------------------------------|------------------|
| То               | Semi-processed products or finished leather, hair save | Semi-processed products or finished leather, hair burn | Finished Leather |
| Finished leather | 91,2%                                                  | 100,0%                                                 | 100,0%           |
| Recovered hair   | 8,8%                                                   | -                                                      | -                |

## 545 Table 22 Allocation factors for ovine leather

| From             | Ra                                                        | w                                                      | Semi-processed products |  |  |
|------------------|-----------------------------------------------------------|--------------------------------------------------------|-------------------------|--|--|
| То               | Semi-processed products or finished<br>leather, wool save | Semi-processed products or finished leather, wool burn | Finished Leather        |  |  |
| Finished leather | 60,4%                                                     | 100,0%                                                 | 100,0%                  |  |  |
| Recovered wool   | 39,6%                                                     | -                                                      | -                       |  |  |

- 547 The allocation factors proposed represent the percentages of total tanning impact that go to finished grain 548 split leather and to recoverable losses.
- 549 The Circular Footprint formula shall be applied to all wastes deriving from the tanning processes.

## 550 5.9 Electricity modelling

- 551 The guidelines in this section shall only be used for the processes where company-specific information is 552 collected (situation 1 / Option 1 & 2 / Option 1 of the DNM).
- 553 In PEF studies the following electricity mix shall be used in hierarchical order:
- 554 (i) Supplier-specific electricity product shall be used if:
- 555 (a) Available, and

556

557

559

560

561

- (b) The set of minimum criteria to ensure the contractual instruments are reliable is met.
- 558 (ii) The supplier-specific total electricity mix shall be used if:
  - (a) Available, and
    - (b) The set of minimum criteria to ensure the contractual instruments are reliable is met.
- 562(iii)As a last option the 'country-specific residual grid mix, consumption mix' shall be used (available563at <a href="http://lcdn.thinkstep.com/Node/">http://lcdn.thinkstep.com/Node/</a>). Country-specific means the country in which the life cycle564stage occurs. This may be an EU country or non-EU country. The residual grid mix characterizes565the unclaimed, untracked or publicly shared electricity. This prevents double counting with the566use of supplier-specific electricity mixes in (i) and (ii).
- 567 Note: if for a country, there is a 100% tracking system in place, case (i) shall be applied.
- 568 Note: for the use stage, the consumption grid mix shall be used.

The environmental integrity of the use of supplier-specific electricity mix depends on ensuring that contractual instruments (for tracking) **reliably and uniquely convey claims to consumers**. Without this, the PEF lacks the accuracy and consistency necessary to drive product/corporate electricity procurement decisions and accurate consumer (buyer of electricity) claims. Therefore, a set of minimum criteria that relate to the integrity of the contractual instruments as reliable conveyers of environmental footprint information has been identified. They represent the minimum features necessary to use supplier-specific mix within PEF studies.

- 576 <u>Set of minimal criteria to ensure contractual instruments from suppliers:</u>
- 577 A supplier-specific electricity product/mix may only be used when the applicant ensures that any contractual 578 instrument meets the criteria specified below. If contractual instruments do not meet the criteria, then 579 'country-specific residual grid mix, consumption mix' shall be used in the modelling.
- 575 Country-specific residual grid mix, consumption mix shall be used in the mo
- 580 A contractual instrument used for electricity modelling shall:
- 581 1. Convey attributes:

- 582 Convey the energy type mix associated with the unit of electricity produced. •
- 583 The energy type mix shall be calculated based on delivered electricity, incorporating certificates • sourced and retired on behalf of its customers. Electricity from facilities for which the attributes have 584 been sold off (via contracts or certificates) shall be characterized as having the environmental 585 586 attributes of the country residual consumption mix where the facility is located.
- 587 2. Be a unique claim:
- Be the only instruments that carry the environmental attribute claim associated with that guantity 588 589 of electricity generated.
- 590 Be tracked and redeemed, retired, or cancelled by or on behalf of the company (e.g. by an audit of • 591 contracts, third party certification, or may be handled automatically through other disclosure 592 registries, systems, or mechanisms).
- 593 3. Be as close as possible to the period to which the contractual instrument is applied.
- 594 Modelling 'country-specific residual grid mix, consumption mix':

595 Datasets for residual grid mix, per energy type, per country and per voltage have been purchased by the European 596 Commission and available the dedicated node are in 597 (https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/e-

598 track ii guarantees of origin in europe.pdf). In case the necessary dataset is not available, an alternative 599 dataset shall be chosen according to the procedure described in section 5.8 Allocation rules. If no dataset is 600 available, the following approach may be used:

- 601 Determine the country consumption mix (e.g. X% of MWh produced with hydro energy, Y% of MWh produced with coal power plant) and combined them with LCI datasets per energy type and country/region 602 603 (e.g. LCI dataset for the production of 1MWh hydro energy in Switzerland):
- 604 Activity data related to non-EU country consumption mix per detailed energy type shall be ۰ 605 determined based on: 606
  - Domestic production mix per production technologies 0
  - 0 Import quantity and from which neighbouring countries
- 608

607

- **Transmission** losses 0 0 Distribution losses
- 610 Type of fuel supply (share of resources used, by import and / or domestic supply) 0 611
  - These data may be found in the publications of the International Energy Agency (IEA).
- 612 Available LCI datasets per fuel technologies in the node. The LCI datasets available are generally ۰ specific to a country or a region in terms of: 613
- 614 Fuel supply (share of resources used, by import and / or domestic supply), 0 615 Energy carrier properties (e.g. element and energy contents) 0 616 0 Technology standards of power plants regarding efficiency, firing technology, fluegas desulphurisation, NOx removal and de-dusting. 617
- 618 Allocation rules:

#### 619 Table 23 Allocation rules for electricity

| Process | Physical<br>relationship | Modelling instructions                                                                                             |
|---------|--------------------------|--------------------------------------------------------------------------------------------------------------------|
| Tanning | Hide substance content   | Allocation between pre-treated raw hides/skins and their co-products shall be based on the hide substance content. |

620 If the consumed electricity comes from more than one electricity mix, each mix source shall be used in terms

of its proportion in the total kWh consumed. For example, if a fraction of this total kWh consumed is coming

622 from a specific supplier a supplier-specific electricity mix shall be used for this part. See below for on-site

- 623 electricity use.
- 624 A specific electricity type may be allocated to one specific product in the following conditions:
- a. The production (and related electricity consumption) of a product occurs in a separate site (building),
  the energy type physical related to this separated site may be used.
- b. The production (and related electricity consumption) of a product occurs in a shared space with
   specific energy metering or purchase records or electricity bills, the product specific information
   (measure, record, bill) may be used.
- c. All the products produced in the specific plant are supplied with a public available PEF study. The
  company who wants to make the claim shall make all PEF studies available. The allocation rule
  applied shall be described in the PEF study, consistently applied in all PEF studies connected to the
  site and verified. An example is the 100% allocation of a greener electricity mix to a specific product.
- 634 <u>On-site electricity generation:</u>
- 635 If on-site electricity production is equal to the site own consumption, two situations apply:
- 636 O No contractual instruments have been sold to a third party: the own electricity mix (combined with
   637 LCI datasets) shall be modelled.
- 638 Contractual instruments have been sold to a third party: the 'country-specific residual grid mix, 639 consumption mix' (combined with LCI datasets) shall be used.

If electricity is produced in excess of the amount consumed on-site within the defined system boundary and
is sold to, for example, the electricity grid, this system can be seen as a multifunctional situation. The system
will provide two functions (e.g. product + electricity) and the following rules shall be followed:

643 o If possible, apply subdivision.

- Subdivision applies both to separate electricity productions or to a common electricity production
   where you can allocate based on electricity amounts the upstream and direct emissions to your own
   consumption and to the share you sell out of your company (e.g. if a company has a wind mill on its
   production site and export 30% of the produced electricity, emissions related to 70% of produced
   electricity should be accounted in the PEF study.
- 649 o If not possible, direct substitution shall be used. The country-specific residual consumption electricity
   650 mix shall be used as substitution<sup>22</sup>.

<sup>&</sup>lt;sup>22</sup> For some countries, this option is a best case rather than a worst case.

Subdivision is considered as not possible when upstream impacts or direct emissions are closely
 related to the product itself.

## **5.10 Climate change modelling**

- The impact category 'climate change' shall be modelled considering three sub-categories:
- Climate change fossil: This sub-category includes emissions from peat and calcination/carbonation
   of limestone. The emission flows ending with '(fossil)' (e.g., 'carbon dioxide (fossil)'' and 'methane
   (fossil)') shall be used if available.
- 2. Climate change biogenic: This sub-category covers carbon emissions to air (CO<sub>2</sub>, CO and CH<sub>4</sub>) 658 659 originating from the oxidation and/or reduction of biomass by means of its transformation or 660 degradation (e.g. combustion, digestion, composting, landfilling) and CO<sub>2</sub> uptake from the atmosphere through photosynthesis during biomass growth - i.e. corresponding to the carbon 661 content of products, biofuels or aboveground plant residues such as litter and dead wood. Carbon 662 exchanges from native forests<sup>23</sup> shall be modelled under sub-category 3 (incl. connected soil 663 emissions, derived products, residues). The emission flows ending with '(biogenic)' shall be used. 664 A simplified modelling approach shall not be used when modelling the foreground emissions. 665
- 666 All biogenic carbon emissions and removals shall be modelled separately. However, note that the 667 corresponding characterisation factors for biogenic CO<sub>2</sub> uptakes and emissions within the EF impact 668 assessment method are set to zero.

#### 669 Table 24 Characterization Factors (CFs) in CO2-equivalents, with carbon feedbacks

| Substance                         | Compartment        | GWP100 |
|-----------------------------------|--------------------|--------|
| Carbon dioxide (fossil)           | Air emission       | 1      |
| Methane (fossil)                  | Air emission       | 36,75  |
| Carbon monoxide (fossil)          | Air emission       | 1,57   |
| Carbon dioxide (biogenic)         | Resources from air | 0      |
| Carbon dioxide (biogenic-100yr)   | Resources from air | -1     |
| Carbon dioxide (biogenic)         | Air emission       | 0      |
| Methane (biogenic)                | Air emission       | 34     |
| Carbon monoxide (biogenic)        | Air emission       | 0      |
| Carbon dioxide (land use change)  | Resources from air | -1     |
| Carbon dioxide (land use change)  | Air emission       | 1      |
| Methane (land use change)         | Air emission       | 36,75  |
| Carbon monoxide (land use change) | Air emission       | 1,57   |

670 The biogenic carbon content at factory gate (physical content and allocated content) shall be 671 reported as 'additional technical information'.

<sup>&</sup>lt;sup>23</sup> Native forests – represents native or long-term, non-degraded forests. Definition adapted from table 8 in Annex V C(2010)3751 to Directive 2009/28/EC.

672 3. Climate change – land use and land transformation: This sub-category accounts for carbon uptakes
673 and emissions (CO<sub>2</sub>, CO and CH<sub>4</sub>) originating from carbon stock changes caused by land use change
674 and land use. This sub-category includes biogenic carbon exchanges from deforestation, road
675 construction or other soil activities (incl. soil carbon emissions). For native forests, all related CO<sub>2</sub>
676 emissions are included and modelled under this sub-category (including connected soil emissions,
677 products derived from native forest<sup>24</sup> and residues), while their CO<sub>2</sub> uptake is excluded. The emission
678 flows ending with '(land use change)' shall be used.

- 679 For land use change, all carbon emissions and removals shall be modelled following the modelling 680 guidelines of PAS 2050:2011 (BSI 2011) and the supplementary document PAS2050-1:2012 (BSI 681 2012) for horticultural products. PAS 2050:2011 (BSI 2011): Large emissions of GHGs can result as a 682 consequence of land use change. Removals as a direct result of land use change (and not as a result 683 of long-term management practices) do not usually occur, although it is recognized that this could 684 happen in specific circumstances. Examples of direct land use change are the conversion of land used 685 for growing crops to industrial use or conversion from forestland to cropland. All forms of land use 686 change that result in emissions or removals are to be included. Indirect land use change refers to such conversions of land use as a consequence of changes in land use elsewhere. While GHG 687 emissions also arise from indirect land use change, the methods and data requirements for 688 689 calculating these emissions are not fully developed. Therefore, the assessment of emissions arising 690 from indirect land use change is not included.
- 691 The GHG emissions and removals arising from direct land use change shall be assessed for any input 692 to the life cycle of a product originating from that land and shall be included in the assessment of 693 GHG emissions. The emissions arising from the product shall be assessed on the basis of the default 694 land use change values provided in PAS 2050:2011 Annex C, unless better data is available. For 695 countries and land use changes not included in this annex, the emissions arising from the product shall be assessed using the included GHG emissions and removals occurring as a result of direct land 696 697 use change in accordance with the relevant sections of the IPCC (2006). The assessment of the impact 698 of land use change shall include all direct land use change occurring not more than 20 years, or a 699 single harvest period, prior to undertaking the assessment (whichever is the longer). The total GHG 700 emissions and removals arising from direct land use change over the period shall be included in the 701 quantification of GHG emissions of products arising from this land on the basis of equal allocation to 702 each year of the period<sup>25</sup>.
- 7031) Where it can be demonstrated that the land use change occurred more than 20 years prior to the704assessment being carried out, no emissions from land use change should be included in the705assessment.
- 7062) Where the timing of land use change cannot be demonstrated to be more than 20 years, or a707single harvest period, prior to making the assessment (whichever is the longer), it shall be assumed708that the land use change occurred on 1 January of either:
  - The earliest year in which it can be demonstrated that the land use change had occurred; or
    - On 1 January of the year in which the assessment of GHG emissions and removals is being carried out.

709

710

<sup>&</sup>lt;sup>24</sup> Following the instantaneous oxidation approach in IPCC 2013 (Chapter 2).

<sup>&</sup>lt;sup>25</sup> In case of variability of production over the years, a mass allocation should be applied.

- The following hierarchy shall apply when determining the GHG emissions and removals arising from
  land use change occurring not more than 20 years or a single harvest period, prior to making the
  assessment (whichever is the longer):
- 7151. where the country of production is known and the previous land use is known, the GHG716emissions and removals arising from land use change shall be those resulting from the717change in land use from the previous land use to the current land use in that country718(additional guidelines on the calculations can be found in PAS 2050-1:2012);
- 7192. where the country of production is known, but the former land use is not known, the GHG720emissions arising from land use change shall be the estimate of average emissions from the721land use change for that crop in that country (additional guidelines on the calculations can722be found in PAS 2050-1:2012);
- 7233. where neither the country of production nor the former land use is known, the GHG724emissions arising from land use change shall be the weighted average of the average land725use change emissions of that commodity in the countries in which it is grown.

Knowledge of the prior land use can be demonstrated using a number of sources of information,
such as satellite imagery and land survey data. Where records are not available, local knowledge of
prior land use can be used. Countries in which a crop is grown can be determined from import
statistics, and a cut-off threshold of not less than 90% of the weight of imports may be applied. Data
sources, location and timing of land use change associated with inputs to products shall be reported.

- Soil carbon storage shall not be modelled, calculated and reported as additional environmentalinformation.
- The sum of the three sub-categories shall be reported.
- The sub-category 'Climate change-biogenic' shall be reported separately.
- The sub-category 'Climate change-land use and land transformation' shall not be reported separately.

## 736 5.11 Modelling of wastes and recycled content

The waste of products used during the manufacturing, distribution, the use stage or after use shall be included in the overall modelling of the life cycle of the organisation. Overall, this should be modelled and reported at the life cycle stage where the waste occurs. This section gives guidelines on how to model the End-of-Life of products as well as the recycled content.

In the case of recovery and reuse of chromium from chrome tanning waste water, the Circular Footprint
Formula (CFF) shall be applied. Its parameters can greatly influence results and primary data shall be used.
In case primary data are not available, default values (Table 25) shall be used.

#### 744 Table 25: Default values for chromium recovery CFF

| Parameter                    | Value | Justification    |
|------------------------------|-------|------------------|
| R <sub>1</sub> <sup>26</sup> | -     | Process specific |

<sup>&</sup>lt;sup>26</sup> R<sub>1</sub> shall be set to 0% when no application-specific data is available. See Annex C of PEFCR Guidance version 6.3.

| Parameter      | Value              | Justification                                                    |
|----------------|--------------------|------------------------------------------------------------------|
| R <sub>2</sub> | 0,24 <sup>27</sup> | Average percentage of chrome waste to recovery (Italian average) |
| R <sub>3</sub> | 0,00               | No energy recovery                                               |
| Qs             | 0,10               | Average concentration of recovered chrome                        |
| Qp             | 0,26               | Average concentration of virgin chrome                           |
| $E_v = E^*_v$  |                    | See Table 39                                                     |
| Erecycled      |                    | Use primary data                                                 |
| Erecycling EoL |                    | Use primary data                                                 |
| ED             |                    | See Table 39                                                     |

745 In case paperboard is used as packaging for tanned leather, the complete CFF shall be used. In case primary

data on recycled content of material (R<sub>1</sub>) are non-available, 0,779 value shall be used (value tested within

the leather screening study and used in the screening study performed by the pilot for "intermediate paper

748 product" for the RP "packaging paper"). To model E<sub>v</sub> and E<sub>recycled</sub>, the following dataset shall be used:

- E<sub>v</sub>: Corrugated board, uncoated | Kraft Pulping Process, pulp pressing and drying | production mix, at plant | flute thickness 0.8- 2.8 mm {EU-28+EFTA} [LCI result] (UUID: 574bdb1e-2ed3-46f1-bd14-bb76f739bb71);
- E<sub>recycled</sub>: Newsprint| production mix| at plant| per kg Newsprint {EU-28+3} [LCI result] (UUID: 98b2b259-83b7-4e0f-bde9-99a85b8c38cd).
- 754 **6. Life cycle stages**
- 755 6.1 Raw material acquisition and pre-processing

This life cycle stage includes the acquisition of raw hides and skins. The environmental impact of this life cycle
 stage is attributable to the portion of environmental impact of the farming and slaughtering phases allocated

accordingly to chapter 5.8 Allocation rules and the impact of raw hides and skins transportation from the

759 slaughterhouse/preservation site to the tannery.

- The user of this PEFCR shall modify, as appropriate and where available, the geographical origin of the
- 761 datasets reported in the tables below to make the result of the footprint calculation more accurate.

<sup>&</sup>lt;sup>27</sup> UNIC Data, economic department.

762 Table 26 Raw material acquisition and pre-processing (capitals indicate those processes expected to be run by the company)

|                                                         | Unit of                 |                  |                  | Default                                                                              |                                                            |                                                      |      | Deafu | lt DQR |      | Most                         |
|---------------------------------------------------------|-------------------------|------------------|------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|------|-------|--------|------|------------------------------|
| Process name*                                           | measurement<br>(output) | R1 <sup>28</sup> | Amount<br>per DU | Dataset                                                                              | Dataset<br>source                                          | UUID                                                 | Р    | TiR   | GR     | TeR  | relevant<br>process<br>[Y/N] |
| Fresh hides<br>from EU<br>consumption                   | kg / year               | n/a              | n/a              | Beef, fresh hides <br>at<br>slaughterhouse <br>per kg {EU-28+3}<br>[LCI result]      | https://l<br>cdn.qua<br>ntis-<br>softwar<br>e.com/P<br>EF/ | e018a5e8-<br>c279-4c56-<br>8b80-<br>a6e82ed0d<br>dd7 | 2,53 | 2,00  | 2,00   | 2,12 | Y                            |
| Sheep and<br>goats from EU<br>consumption <sup>29</sup> | kg / year               | n/a              | n/a              | Sheep  for<br>slaughter  at<br>farm  per kg live<br>weight {EU-28+3}<br>[LCI result] | https://l<br>cdn.qua<br>ntis-<br>softwar<br>e.com/P<br>EF/ | 3ec70437-<br>8366-4129-<br>8dc7-<br>8b9cbbb58<br>fec | 2,30 | 1,89  | 1,47   | 2,20 | Y                            |

The applicant shall report the DQR values (for each criterion + total) for all the datasets used.

## 764 Table 27 Transport (capitals indicate those processes expected to be run by the company)<sup>30</sup>

| Process name*                                      | Unit of                 | Default          |                  |                                                            |                                  | Deafult DQR                 |      |      | Most |      |                              |
|----------------------------------------------------|-------------------------|------------------|------------------|------------------------------------------------------------|----------------------------------|-----------------------------|------|------|------|------|------------------------------|
|                                                    | measurement<br>(output) | R1 <sup>31</sup> | Amount<br>per FU | Dataset                                                    | Dataset<br>source                | UUID                        | Р    | TiR  | GR   | TeR  | relevant<br>process<br>[Y/N] |
| Transportation<br>of raw hides /<br>skins on lorry | kgkm / year             | n/a              | n/a              | Articulated lorry<br>transport, total<br>weight >32 t, mix | http://lc<br>dn.think<br>step.co | 328984f<br>2-4a54-<br>419a- | 2,00 | 1,00 | 3,00 | 1,00 | Y                            |

<sup>&</sup>lt;sup>28</sup> In case no specific values are available R1 shall be set to 0%.

<sup>&</sup>lt;sup>29</sup> If no primary data are available to model caprine and ovine slaughtering, LCI reported in Table 37 shall be used and related allocation rule, as reported in 5.8 Allocation rules, shall be applied.

<sup>&</sup>lt;sup>30</sup> If no primary data on transportation distances are available, the default values reported in Table 38 shall be used.

<sup>&</sup>lt;sup>31</sup> In case no specific values are available R1 shall be set to 0%.

|                                                                      | Unit of                 |                  |                  | Default                                                                                                                                                                             |                                                 |                                                          |      | Deafu | lt DQR |      | Most                         |
|----------------------------------------------------------------------|-------------------------|------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|------|-------|--------|------|------------------------------|
| Process name*                                                        | measurement<br>(output) | R1 <sup>31</sup> | Amount<br>per FU | Dataset                                                                                                                                                                             | Dataset<br>source                               | UUID                                                     | Р    | TiR   | GR     | TeR  | relevant<br>process<br>[Y/N] |
|                                                                      |                         |                  |                  | Euro 0-5   diesel<br>driven, Euro 0 - 5<br>mix, cargo  <br>consumption mix, to<br>consumer   more<br>than 32t gross<br>weight / 24,7t<br>payload capacity<br>{EU-28+3} [LCI result] | m/Node<br>/                                     | b88a-<br>5426a75<br>d0b27                                |      |       |        |      |                              |
| Transportation<br>of raw hides /<br>skins on<br>transoceanic<br>ship | kgkm / year             | n/a              | n/a              | Transoceanic ship,<br>containers   heavy<br>fuel oil driven,<br>cargo   consumption<br>mix, to consumer  <br>27.500 dwt payload<br>capacity, ocean<br>going {GLO} [LCI<br>result]   | http://lc<br>dn.think<br>step.co<br>m/Node<br>/ | 6ca6111<br>2-1d5b-<br>473c-<br>abfa-<br>4accc66<br>a8a63 | 2,00 | 1,00  | 2,00   | 2,00 | Y                            |

\*The applicant of this PEFCR shall always check the utilisation ratio applied in the default dataset and adaptit accordingly.

## 768 *Modelling the recycled content (if applicable)*

769 The following formula is used to model the recycled content:

770 
$$(1 - R_1)E_V + R_1 \times \left(AE_{\text{recycled}} + (1 - A)E_V \times \frac{Q_{\text{Sin}}}{Q_p}\right)$$

The R<sub>1</sub> values applied shall be supply-chain or default as provided in the table above, in relation with the
 DNM. Material-specific values based on supply market statistics are not accepted as a proxy. The applied R<sub>1</sub>
 values shall be subject to PEF study verification.

- 774 When using supply-chain specific  $R_1$  values other than 0, traceability throughout the supply chain is 775 necessary. The following general guidelines shall be followed when using supply-chain specific  $R_1$  values:
- The supplier information (through e.g., statement of conformity or delivery note) shall be maintained during all stages of production and delivery at the converter;
- Once the material is delivered to the converter for production of the end products, the converter
   shall handle information through their regular administrative procedures;
- The converter for production of the end products claiming recycled content shall demonstrate
   through his management system the [%] of recycled input material into the respective end
   product(s).
- The latter demonstration shall be transferred upon request to the user of the end product. In case a
   PEF profile is calculated and reported, this shall be stated as additional technical information of the
   PEF profile.
- Company-owned traceability systems can be applied as long as they cover the general guidelines
   outlined above.
- The PEF profile shall be calculated and reported using A equal to 1.
- 789 6.2 Manufacturing
- Processes expected to be run by the company at manufacturing stage, for which company-specific data are
   mandatory, are reported in chapter 5.1 List of mandatory company-specific data.
- 792 **7. PEF results**
- 793 **7.1 Benchmark values**
- 794 Benchmark is not applicable for leather since it is an intermediate product.

## 795 **7.2 PEF profile**

The applicant shall calculate the PEF profile of its product in compliance with all requirements included in this PEFCR. The following information shall be included in the PEF report:

- 798 full life cycle inventory;
- characterised results in absolute values, for all impact categories (including toxicity; as a table);
- normalised and weighted result in absolute values, for all impact categories (including toxicity; as a table);
- 802 the aggregated single score in absolute values

Together with the PEF report, the applicant shall develop an aggregated EF-compliant dataset of its product in scope. This dataset shall be made available on the EF node (<u>http://eplca.jrc.ec.europa.eu/EF-node</u>). The disaggregated version may stay confidential.

- 806 **7.3 Additional technical information**
- 807 The recycled content (R1) shall be reported.
- 808 Results with application-specific A-values, if relevant.

## 809 **7.4 Additional environmental information**

Additional environmental information shall include the carbon storage in the leather at the tannery gate, as
 described in ANNEX 6 – Downstream scenarios.

812 Biodiversity is already captured by the land use impact category. It is indeed proposed by the UN 813 Environment as a good proxy for the impact on biodiversity.

814 Biodiversity is not considered as relevant for this PEFCR.

## 815 **8. Verification**

816 The verification of an EF study/report carried out in compliance with this PEFCR shall be done according to

- all the general requirements included in Section 8 of the PEFCR Guidance 6.3 and the requirements listed below.
- 819 The verifier(s) shall verify that the EF study is conducted in compliance with this PEFCR.
- These requirements will remain valid until an EF verification scheme is adopted at European level or alternative verification approaches applicable to EF studies/report are included in existing or new policies.
- The verifier(s) shall validate the accuracy and reliability of the quantitative information used in the calculation of the study. As this can be highly resource intensive, the following requirements shall be followed:
- The verifier shall check if the correct version of all impact assessment methods was used. For each of the most relevant impact categories, at least 50% of the characterisation factors (for each of the most relevant EF impact categories) shall be verified, while all normalisation and weighting factors of all ICs shall be verified. In particular, the verifier shall check that the characterisation factors

- correspond to those included in the EF impact assessment method the study declares compliance
   with<sup>32</sup>;
- All the newly created datasets shall be checked on their EF compliancy (for the meaning of EF compliant datasets refer to Annex H of the Guidance). All their underlying data (elementary flows, activity data and sub processes) shall be validated;
- The aggregated EF-compliant dataset of the product in scope (meaning, the EF study) is available on
   the EF node (http://eplca.jrc.ec.europa.eu/EF-node).
- For at least 70% of the most relevant processes in situation 2 option 2 of the DNM, 70% of the underlying data shall be validated. The 70% data shall including all energy and transport sub processes for those in situation 2 option 2;
- For at least 60% of the most relevant processes in situation 3 of the DNM, 60% of the underlying data shall be validated;
- For at least 50% of the other processes in situation 1, 2 and 3 of the DNM, 50% of the underlying data shall be validated.
- 842 In particular, it shall be verified for the selected processes if the DQR of the process satisfies the minimum843 DQR as specified in the DNM.
- The selection of the processes to be verified for each situation shall be done ordering them from the most contributing to the less contributing one and selecting those contributing up to the identified percentage
- starting from the most contributing ones. In case of non-integer numbers, the rounding shall be made always
   considering the next upper integer.
- These data checks shall include, but should not be limited to, the activity data used, the selection of secondary sub-processes, the selection of the direct elementary flows and the CFF parameters. For example, if there are 5 processes and each one of them includes 5 activity data, 5 secondary datasets and 10 CFF parameters, then the verifier(s) has to check at least 4 out of 5 processes (70%) and, for each process, (s)he shall check at least 4 activity data (70% of the total amount of activity data), 4 secondary datasets (70% of the total amount of secondary datasets), and 7 CFF parameters (70% of the total amount of CFF parameters),
- i.e. the 70% of each of data that could be possible subject of check.
- The verification of the EF report shall be carried out by randomly checking enough information to provide reasonable assurance that the EF report fulfils all the conditions listed in section 8 of the PEFCR Guidance.

## 857 9. References

- BLC: K. Alexander, eta al, JSLTC, 17, 1992.
- 859 CIV INRA, Valeurs nutritionnelles des viandes 2006-2009
- 860 CTC and SSIP data for Solid Waste production for leathers of small and large dimensions France and Italy,861 1979
- 862 CTC: M. Aloy, Proceedings IULTCS ENVIRONMENT COMMISSION, VIENNA, April 1991,

<sup>&</sup>lt;sup>32</sup> Available at: <u>http://eplca.jrc.ec.europa.eu/LCDN/developer.xhtml</u>

- 863 D. Winters, UNIDO, id/wg.411/10, 1984
- Die Lederherstellung. Sonderdrueck 148 aus Leder und Hauetemarkt "Gerbereiwissenschaft und Praxis",
   Decemebr 1979
- 866 DTI: W. Frendrup et al, "Environmental Managment in Tanneries A Practical Handbook", DTI, 1995
- EU: Technical and Economic Study on the Reduction (based on the best technology available9 of Industrial
   Emissions (water, air and solid wastes) from Tanneries", 92/013868/LR/sh, April 1992
- 869 Food and Agriculture Organization of the United Nations Statistics division (FAOSTAT)
- 870 Hellenic Tanners Association: I.A. Ioannidis, IPPC Study of the Hellenoc Leather Sector, 1998
- 871 Herfeld & Pauckner, Sonderdrueck 35
- 872 Innovaleather Project www.innovaleather.ro, 2014, Bucharest, Romania
- 873 Lollar, JALCA, 311, 1982.
- M. Portavella: La verdad de la contaminacion en tenerias lanares, 1991
- 875 Ministry of Agriculture USA, JALCA, 380, 1992

876 National Bank for Industrial Development S.A., August 1997, Athens, Study offices: M. Bakalis, Dr. P.

877 Markantonatos and Dr. A. Paraskevopoulou R. Puig et al, "Feasibility survey and technical preliminary study 878 for the recovery and reuse of Chromium as well as the Management of biosolids and solid waste of the IN.PA

879 of Leather"

- Rita Puig et al, Industrial ecology in the cattle-to-leather supply chain, pages 42-43 ISBN 978-88-464-96966, Francoangeli srl, 2007, Milano. Italy
- 882 Simoncini, E. Chraccevini, G. Simone, IV Congresso Internazionale di Merceologia, Bari, September 1983.
- SSIP: A. Simoncini, De Simone eta al, CPMC, 24, 1989.
- 884 SSIP: G. Manzo, 67(5), 1991
- 885 W. Pauckner, Sonderdrueck, 97, 1971

## 886 ANNEX 1 – List of EF normalisation and weighting factors

887 Global normalisation factors are applied within the EF. The normalisation factors as the global impact per888 person are used in the EF calculations.

## 889 Table 28 List of EF normalisation and weighting factors

| Impact category                                   | Unit                       | Normalisation<br>factor | Normalisation<br>factor per<br>person | Impact<br>assessment<br>robustness | Inventory<br>coverage<br>completeness | Inventory<br>robustness | Comment                                                                                                                           |
|---------------------------------------------------|----------------------------|-------------------------|---------------------------------------|------------------------------------|---------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Climate change                                    | kg CO <sub>2 eq</sub>      | 5.35E+13                | 7.76E+03                              | I                                  | П                                     | 1                       |                                                                                                                                   |
| Ozone depletion                                   | kg CFC-11<br><sup>eq</sup> | 1.61E+08                | 2.34E-02                              | I                                  | 111                                   | 11                      |                                                                                                                                   |
| Human toxicity,<br>cancer                         | CTUh                       | 2.66E+05                | 3.85E-05                              | 11/111                             | Ш                                     | ш                       |                                                                                                                                   |
| Human toxicity,<br>non-cancer                     | CTUh                       | 3.27E+06                | 4.75E-04                              | 11/111                             | 111                                   | 111                     |                                                                                                                                   |
| Particulate matter                                | disease<br>incidence       | 4.39E+06                | 6.37E-04                              | 1                                  | 1/11                                  | 1 /11                   | NF calculation takes<br>into account the<br>emission height both<br>in the emission<br>inventory and in the<br>impact assessment. |
| Ionising radiation,<br>human health               | kBq U <sup>235</sup> eq    | 2.91E+13                | 4.22E+03                              | П                                  | П                                     | ш                       |                                                                                                                                   |
| Photochemical<br>ozone formation,<br>human health | kg<br>NMVOC <sub>eq</sub>  | 2.80E+11                | 4.06E+01                              | 11                                 | ш                                     | 1/11                    |                                                                                                                                   |
| Acidification                                     | mol H+ <sub>eq</sub>       | 3.83E+11                | 5.55E+01                              | 11                                 | П                                     | 1/11                    |                                                                                                                                   |
| Eutrophication,<br>terrestrial                    | mol N <sub>eq</sub>        | 1.22E+12                | 1.77E+02                              | II                                 | 11                                    | 1/11                    |                                                                                                                                   |
| Eutrophication, freshwater                        | kg P <sub>eq</sub>         | 1.76E+10                | 2.55E+00                              | П                                  | 11                                    | ш                       |                                                                                                                                   |
| Eutrophication, marine                            | kg N <sub>eq</sub>         | 1.95E+11                | 2.83E+01                              | II                                 | Ш                                     | 11/111                  |                                                                                                                                   |
| Land use                                          | pt                         | 9.20E+15                | 1.33E+06                              | 111                                | П                                     | 11                      | The NF is built by<br>means of regionalised<br>CFs.                                                                               |

| Impact category                         | Unit                                  | Normalisation<br>factor | Normalisation<br>factor per<br>person | Impact<br>assessment<br>robustness | Inventory<br>coverage<br>completeness | Inventory<br>robustness | Comment                                             |
|-----------------------------------------|---------------------------------------|-------------------------|---------------------------------------|------------------------------------|---------------------------------------|-------------------------|-----------------------------------------------------|
| Ecotoxicity,<br>freshwater              | CTUe                                  | 8.15E+13                | 1.18E+04                              | 11/111                             | Ш                                     | ш                       |                                                     |
| Water use                               | m <sup>3</sup> world<br><sup>eq</sup> | 7.91E+13                | 1.15E+04                              | 111                                | 1                                     | 11                      | The NF is built by<br>means of regionalised<br>CFs. |
| Resource use,<br>fossils                | MJ                                    | 4.50E+14                | 6.53E+04                              | 111                                | I                                     | II                      |                                                     |
| Resource use,<br>minerals and<br>metals | kg Sb <sub>eq</sub>                   | 3.99E+08                | 5.79E-02                              | 111                                | 1                                     | 11                      |                                                     |

# 891 Weighting factors for Environmental Footprint

## 892 Table 29 Weighting factors for Environmental Footprint

|                                                | Aggregated<br>weighting set<br>(50:50) | Robustness<br>factors<br>(scale 1-0.1) | Calculation | Final weighting factors |
|------------------------------------------------|----------------------------------------|----------------------------------------|-------------|-------------------------|
| WITHOUT TOX CATEGORIES                         | Α                                      | В                                      | C=A*B       | C scaled to 100         |
| Climate change                                 | 15.75                                  | 0.87                                   | 13.65       | 22.19                   |
| Ozone depletion                                | 6.92                                   | 0.6                                    | 4.15        | 6.75                    |
| Particulate matter                             | 6.77                                   | 0.87                                   | 5.87        | 9.54                    |
| Ionizing radiation, human health               | 7.07                                   | 0.47                                   | 3.3         | 5.37                    |
| Photochemical ozone formation,<br>human health | 5.88                                   | 0.53                                   | 3.14        | 5.1                     |
| Acidification                                  | 6.13                                   | 0.67                                   | 4.08        | 6.64                    |
| Eutrophication, terrestrial                    | 3.61                                   | 0.67                                   | 2.4         | 3.91                    |
| Eutrophication, freshwater                     | 3.88                                   | 0.47                                   | 1.81        | 2.95                    |
| Eutrophication, marine                         | 3.59                                   | 0.53                                   | 1.92        | 3.12                    |
| Land use                                       | 11.1                                   | 0.47                                   | 5.18        | 8.42                    |
| Water use                                      | 11.89                                  | 0.47                                   | 5.55        | 9.03                    |
| Resource use, minerals and metals              | 8.28                                   | 0.6                                    | 4.97        | 8.08                    |
| Resource use, fossils                          | 9.14                                   | 0.6                                    | 5.48        | 8.92                    |

# 894 ANNEX 2 - check-list for the PEF study

Each PEF study shall include this annex, completed with all the requested information.

## 896 Table 30 Check-list for the PEF study

| ITEM                                                                                           | Included in the<br>study (Y/N) | Section | Page |
|------------------------------------------------------------------------------------------------|--------------------------------|---------|------|
| Summary                                                                                        |                                |         |      |
| General information about the product                                                          |                                |         |      |
| General information about the company                                                          |                                |         |      |
| Diagram with system boundary and indication of the situation according to DNM                  |                                |         |      |
| List and description of processes included in the system<br>boundaries                         |                                |         |      |
| List of co-products, by-products and waste                                                     |                                |         |      |
| List of activity data used                                                                     |                                |         |      |
| List of secondary datasets used                                                                |                                |         |      |
| Data gaps                                                                                      |                                |         |      |
| Assumptions                                                                                    |                                |         |      |
| Scope of the study                                                                             |                                |         |      |
| (Sub)category to which the product belongs                                                     |                                |         |      |
| DQR calculation of each dataset used for the most relevant processes and the new ones created. |                                |         |      |
| DQR (of each criteria and total) of the study                                                  |                                |         |      |

# 898 ANNEX 3 - Critical review report of the PEFCR

#### 899 Table 31 Critical review report of the PEFCR

| Comment<br># | Reviewer    | Paragraph | Figure / Table | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                                                                     | Proposed change                                                                                                                                                                                                                                                                                                                                                                                                                                              | TS response (first<br>review)                                                                                                                                                                                                                                                                                                                    | Closure (first<br>review)                                                                                                            | TS final response | Final closure |
|--------------|-------------|-----------|----------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 1            | Ugo Pretato | All       | grey texts     | E                                       | The grey texts taken from the PEF<br>Guidance 5.2 and put in brackets<br>at the beginning of each chapter<br>shall be removed                                                                                                          | Delete all grey texts in the final PEFCR                                                                                                                                                                                                                                                                                                                                                                                                                     | Deleted.                                                                                                                                                                                                                                                                                                                                         | Accepted                                                                                                                             |                   |               |
| 2            | SSIP        | 3.3       |                | T, E                                    | It is unclear whether it is meant<br>only for uppers, or also other<br>footwear components (e.g. liners)<br>are included.                                                                                                              | In case you want to refer only to the<br>uppers, change to "footwear uppers".<br>In case you want to refer to all the<br>components for footwear, eliminate<br>the word "upper".                                                                                                                                                                                                                                                                             | Changed with:<br>"Leather for footwear<br>excluding soles".                                                                                                                                                                                                                                                                                      | Accepted, YOU<br>HAVE TO<br>CHANGE ALSO<br>AT LINE 280                                                                               | Changed           |               |
| 3            | Ugo Pretato | 3.3       | PCR            | G                                       | The list of PCR taken into<br>consideration to support the<br>PEFCR elaboration is missing                                                                                                                                             | Provide a list of PCR considered, e.g. in a table in this paragraph or in an Annex.                                                                                                                                                                                                                                                                                                                                                                          | Provided in this paragraph.                                                                                                                                                                                                                                                                                                                      | Accepted                                                                                                                             |                   |               |
| 4            | Ugo Pretato | 3.4       | Issue papers   | G                                       | The PEFCR conformance shall be<br>also declared against the TAB<br>issue papers which are significant<br>for the leather sector.                                                                                                       | List all finalized issue papers applicable<br>to these PEFCR and make sure<br>appropriate reference to them is made<br>throughout the document. As a<br>minimum the list should include the<br>followings:<br>Biodeversity 2.3<br>Biogenic carbon 2.2<br>Electricity modelling 12<br>Indium contribution<br>Baseline approaches for the<br>cross-cutting issues of the cattle<br>related PEF pilots. Check also<br>provisions in the new PEF<br>guidance v6" | Listed.                                                                                                                                                                                                                                                                                                                                          | Accepted.<br>Compliance with<br>the new<br>guidance 6.0 will<br>be sufficient as<br>the guidance<br>incorporates all<br>issue papers |                   |               |
| 5            | Ugo Pretato | 4.1       | Table 2        | Т                                       | There is a bit of confusion in the<br>functional unit description.<br>Actually, leather is an<br>intermediate product hence it<br>would be more appropriate to<br>refer to a declared unit and a<br>reference flow of 1 m <sup>2</sup> | Clarify that the PEFCR refer to a<br>declared unit of 1 m <sup>2</sup> . The additional<br>specifications put in table 2 may be<br>kept as an example, but it shall be<br>clearly stated that the actual functional<br>unit of leather products can be fully<br>defined only within a cradle-to-grave<br>approach, i.e. when the use and EoL<br>stages are identified.                                                                                       | We have eliminated<br>line 252 and changed<br>the functional unit to<br>declared unit. We also<br>added: "Leather is an<br>intermediate product<br>elaborated to<br>customers<br>specifications that<br>define the intended<br>application and<br>therefore the function<br>it fulfil. However,<br>whether a leather is<br>actually used for the | Accepted                                                                                                                             |                   |               |

| Comment<br># | Reviewer    | Paragraph | Figure / Table | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                                                                                       | Proposed change                                                                                                                                                                                                                                                   | TS response (first<br>review)                                                                                                                                                                                                                                                                                                                                                                                    | Closure (first<br>review)                                    | TS final response | Final closure |
|--------------|-------------|-----------|----------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------|---------------|
|              |             |           |                |                                         |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                   | intended function can<br>only be fully<br>established in a cradle<br>to grave approach<br>where the use and EoL<br>stages are identified."                                                                                                                                                                                                                                                                       |                                                              |                   |               |
| 6            | SSIP        | 4.1       | Table 2        | E                                       | The Italian word "Caratteristiche"<br>has been translated in different<br>ways from standard to standard.<br>Some standards are not updated.<br>For some standards, only a part of<br>the title has been reported.                                       | Harmonize the title of the technical<br>standards and check the date of<br>publication                                                                                                                                                                            | This point is already<br>specified in footnote<br>2: "The most recent<br>version of the enlisted<br>as above standards<br>should be employed<br>during the<br>implementation of<br>these PEFCR." Phrase<br>added to the footnote:<br>"The related level of<br>compliance does not<br>imply market<br>acceptance from<br>customer<br>requirements that in<br>some cases could<br>deviate from those<br>standards" | Accepted                                                     |                   |               |
| 7            | Ugo Pretato | 4.4       | Processes      | G                                       | It is unclear why the "supply of<br>raw hides and skins" is a<br>foreground process, while<br>farming, slaughtering and<br>preservation (which altogether<br>make up the supply of raw hides<br>and skin) are background<br>processes.                   | Clarify the process classification. Add<br>the concept that along leather<br>production processes, also raw hides<br>and skins may be supplied from<br>different parts of the world, therefore<br>this shall be reflected in the PEF scope<br>and data collection | This phrase and Table<br>9 were removed<br>following EF Team<br>request.                                                                                                                                                                                                                                                                                                                                         | Accepted                                                     |                   |               |
| 8            | Ugo Pretato | 4.4       | Outputs        | т                                       | The output list shall mention the<br>relevant co-products from<br>tanneries, which are important<br>for allocation rules. In addition,<br>the carbon content of leather<br>products should be included as<br>relevant information of the core<br>process | Add these items to the output list                                                                                                                                                                                                                                | Added:<br>• Splits when<br>applicable (flesh<br>and middle<br>splits) i.e. when<br>destined to<br>leather<br>• "For carbon<br>content please<br>refer to annex<br>V"                                                                                                                                                                                                                                             | Accepted                                                     |                   |               |
| 9            | Legambiente | 4.4       |                | т                                       | Stock farming, cattle-breeding<br>above all, causes in several<br>geographical areas radically<br>different impacts on various                                                                                                                           | Not in accordance to the guidance.<br>Rejected. Initial phrase of the<br>paragraph modified as follows: "Even if<br>the positions of the scientific                                                                                                               | Not accepted, It's<br>important to consider<br>the different impacts<br>related to the origin of                                                                                                                                                                                                                                                                                                                 | Now included in<br>the new impact<br>category "land<br>use". |                   |               |

|              |             |           |                | Type of                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        |                                                                                                                                           |                                                                          |                                                                                                                                                                                                                                                                          |               |
|--------------|-------------|-----------|----------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Comment<br># | Reviewer    | Paragraph | Figure / Table | comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Proposed change                                                                                                                                                                        | TS response (first<br>review)                                                                                                             | Closure (first<br>review)                                                | TS final response                                                                                                                                                                                                                                                        | Final closure |
|              |             |           |                |                              | ecosystems." Integrare con il<br>punto specifico: perdita di<br>ecosistemi.<br>To complete with specific point:<br>ecosystem consumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | community are not definitively settled<br>yet, the life cycle of leather starts in<br>this PEFCR"                                                                                      | raw materials in this<br>document. It need to<br>be further revised in<br>the final version after<br>the remodeling                       |                                                                          |                                                                                                                                                                                                                                                                          |               |
| 10           | SSIP        | 4.5       | Table 5        | G                            | It's perplexing that among the categories of significant impact for the product leather there are "Human toxicity, cancer effects" and "Human toxicity, non-cancer effects". If preliminary studies have highlighted this anomalous situation, it is believed that these results are due to the limitations mentioned in section 4.7 and evident in the data shown in Annex IX. As it is completely wrong to assume that we can model the impact, in terms of human toxicity, of a chemical substance by the combination of the impacts of substances that have reacted to produce it, the lack of specific data of the substances used in the tanning process produces an incorrect assessment of "Human toxicity" on the leather product. The presentation of a PEFCR on the leather that is based on these assumptions, or that leads to these results, especially when they relate to RP4, namely the vegetable tanned leathers, represents a risk not only for the tanning industry but also for the credibility of your work." | It is suggested to consider "not<br>relevant" the impacts of "Human<br>toxicity" for all RPs, due to the lack of<br>specific data on actual chemicals used<br>in the tanning industry. | Categories removed,<br>but Table 5 is to be<br>modified after<br>remodelling."                                                            | Accepted                                                                 |                                                                                                                                                                                                                                                                          |               |
| 11           | Legambiente | 4.5       | table 5        | т                            | Significant impact of tanning<br>stage on water resources has to<br>be considered also in relation to<br>chemicals used in treatment<br>processes that are found in the<br>wastewater and which are likely<br>to pollute and compromise the<br>natural water resources (rivers<br>and groundwater)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | To consider the water depletion factor in all RPs.                                                                                                                                     | Chemical's impacts on<br>water resources are<br>already taken care<br>appropriately in this<br>study according to the<br>PEF methodology. | Not accepted<br>(we didn't find<br>explicit<br>references<br>about this) | There are specific<br>environmental<br>indicators<br>included in the<br>study that are<br>focused on this<br>topic:<br>acidification,<br>freshwater and<br>marine<br>eutrophication<br>and water use (see<br>Table 9, page 29).<br>The PEFCR also<br>requires to include |               |

| Comment<br># | Reviewer    | Paragraph | Figure / Table | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                            | Proposed change                                                      | TS response (first<br>review)                                                                                                                          | Closure (first<br>review)                                                                                                                    | TS final response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Final closure |
|--------------|-------------|-----------|----------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|              |             |           |                |                                         |                                                                                                                                                                                               |                                                                      |                                                                                                                                                        |                                                                                                                                              | in the study all<br>water emissions<br>(table 17, 18 and<br>19, page 57-58)<br>and indicates the<br>standard methods<br>to use for data<br>collection. The<br>impact of chemical<br>substances<br>production on<br>water resources is<br>included in the<br>default datasets<br>indicated for<br>modelling in<br>Annex 7 (page<br>114).                                                                                                                                                                 |               |
| 12           | Legambiente | 4.5       | table 6        | Т                                       | Different ways of stock farming<br>cause several impacts on<br>biodiversity and, related to<br>habitats where stock farms are<br>placed, act on many different<br>components of biodiversity. | To complete with specific point:<br>biodiversity consumption         | Biodiversity is not a<br>specific ILCD impact<br>category and it is<br>addressed in<br>paragraph "4.6.<br>Additional<br>environmental<br>information". | Not accepted,<br>It's important to<br>consider the<br>different<br>impacts related<br>to the origin of<br>raw materials in<br>this document. | Biodiversity<br>impact is now<br>included in the<br>land use impact<br>category. It is in<br>fact proposed as a<br>good proxy for<br>biodiversity by the<br>United Nations<br>Environment<br>Programme<br>(UNEP). The<br>following<br>statement will be<br>included:<br>"Biodiversity is<br>already captured<br>by the land use<br>impact category. It<br>is indeed<br>proposed by the<br>United Nations<br>Environment<br>Programme<br>(UNEP) as a good<br>proxy for the<br>impact on<br>biodiversity" |               |
| 13           | SSIP        | 4.6       |                | Т, Е                                    | Specify that chromium tanning<br>systems are based on trivalent<br>chromium                                                                                                                   |                                                                      | Word "trivalent"<br>added before<br>"chromium".                                                                                                        | Accepted                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| 14           | Ugo Pretato | 4.6       | Carbon content | G                                       | Additional environmental<br>information shall include the<br>carbon storage in the leather                                                                                                    | Add carbon storage as mandatory additional environmental information | Added.                                                                                                                                                 | Accepted                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |

| Comment<br># | Reviewer    | Paragraph | Figure / Table | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Proposed change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TS response (first<br>review)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Closure (first<br>review)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TS final response            | Final closure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|-------------|-----------|----------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |             |           |                |                                         | product at the tannery gate, as<br>declared in Annex XI and other<br>sections of the PEFCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and a reference to Annex V for the calculation of carbon content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15           | Ugo Pretato | 4.6       | Biodiversity   | G                                       | <ul> <li>The description of the interactions of the leather supply chain with biodiversity is to some extent unclear and incomplete. The following issues need to be addressed:</li> <li>a) Possible hotspots for biodiversity (lines 411-412) might be also generated in tannery operations, in case plants would be located nearby protected areas or areas with a high biodiversity value;</li> <li>b) The paragraph 413-424 contradicts what have been established within the cattle working group and implemented in these PEFCR, i.e. the share of animal breeding impacts allocated to leather applies also to biodiversity impacts;</li> <li>c) The sentence on chrome tanning (lines 444-447) is misleading: we cannot say that chrome tanning "had a positive impact on biodiversity due to the supply chain of chrome tanning products shall be assessed before making this assertion."</li> </ul> | <ul> <li>Revise the section accordingly:</li> <li>a) Include the option to assess<br/>biodiversity impacts at the<br/>tannery level, e.g. through a<br/>mapping of high biodiversity<br/>areas close by the site and the<br/>potential interactions with site<br/>activities and relevant emissions</li> <li>b) Clarify the concept, provide<br/>references to other PEFCR (meat,<br/>feed, dairy) which may have<br/>addressed biodiversity issues and<br/>try to harmonize the rules as far<br/>as possible</li> <li>c) Revise the sentence"</li> </ul> | <ul> <li>a) According to our assessment tannery operations have no specific impact on biodiversity other than those refer to different impact categories. Moreover it is not to our PEFCR to define what are areas with high biodiversity value</li> <li>b) Lines 413 to 424 modified as follows: ""Livestock breeding may affect biodiversity as described in the corresponding PEFCR of feed, meat and dairy, and probably through land changes induced by production. These may have adverse effects on the biosphere when those changes contribute to loss of biodiversity in Brazil, risks for biodiversity have been flagged in relation to deforestation of the Amazonian rainforest for</li> </ul> | Partly accepted.<br>Ok for points a)<br>and c), point b)<br>is still a bit<br>ambiguous,<br>since any<br>impacts on<br>biodiversity<br>related to<br>livestock<br>breeding shall<br>be borne by<br>leather products<br>like all other<br>impacts<br>according to the<br>established<br>allocation rules.<br>This is<br>independent<br>from the<br>influence<br>exerted by<br>leather industry<br>on the upstream<br>stages. Lines<br>375-394 need to<br>be further<br>revised in the<br>final version<br>after the<br>remodelling | See reply to<br>comment #12. | "Accepted, but<br>change the<br>paragraph at<br>lines 1429-1437<br>as follows:<br>Cattle hides<br>from animals<br>originating from<br>these areas,<br>under the<br>current<br>allocation rules,<br>bring to the<br>corresponding<br>leather a share<br>of the impact.<br>However, the<br>determining<br>product of<br>livestock<br>breeding is<br>meat and the<br>demand for<br>hides or skins<br>has no or little<br>influence on<br>their offer. For<br>this reason,<br>leather industry<br>cannot exert a<br>direct control<br>on potential<br>impact sources<br>for biodiversity.<br>Indeed, the<br>demand for<br>meat is the<br>main driver for<br>livestock<br>production." |

| Comment<br># | Reviewer | Paragraph | Figure / Table | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change) | Proposed change | TS response (first<br>review)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Closure (first<br>review) | TS final response | Final closure |
|--------------|----------|-----------|----------------|-----------------------------------------|------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|---------------|
|              |          |           |                |                                         |                                    |                 | <ul> <li>creating grazing<br/>and breeding<br/>areas for cattle.</li> <li>Cattle hides<br/>from animals<br/>originating from<br/>these areas<br/>would attribute,<br/>under the<br/>current<br/>allocation rules,<br/>to the<br/>corresponding<br/>leather a share<br/>of the impact.</li> <li>However,<br/>having regard<br/>that the<br/>determining<br/>product of<br/>livestock<br/>breeding is<br/>meat and that<br/>demand for<br/>hides or skins<br/>has no influence<br/>on their offer to<br/>ascribe to<br/>leather<br/>responsibilities<br/>with regard to<br/>biodiversity on<br/>this count.<br/>Indeed, only<br/>demand for<br/>meat drives<br/>livestock<br/>production."</li> <li>Modified as<br/>follows:<br/>"Furthermore,<br/>the introduction<br/>of trivalent<br/>chrome tanning<br/>in the XX<br/>century, which<br/>constitutes<br/>today typically<br/>85-90% of all<br/>leather</li> </ul> |                           |                   |               |

| Comment<br># | Reviewer    | Paragraph | Figure / Table | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Proposed change                                                                                                                                                                                                                                                                                              | TS response (first<br>review)                                                                                                                                                                                                                                                                                                 | Closure (first<br>review)                                                                                                                                                                                                            | TS final response            | Final closure |
|--------------|-------------|-----------|----------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------|
|              |             |           |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                              | displaced<br>vegetable<br>tanning from<br>the main<br>product<br>categories,<br>limiting it too<br>few applications<br>(e.g. sole<br>leather).<br>Consequently<br>the impacts on<br>biodiversity<br>derived from<br>vegetable<br>tannins<br>remained<br>limited."                                                             |                                                                                                                                                                                                                                      |                              |               |
| 16           | Legambiente | 4.6       |                | G                                       | The use of chromium and other<br>chemicals and their possible<br>presence in waste water and air<br>emissions should be considered<br>as relevant for the assessment of<br>impacts on biodiversity.                                                                                                                                                                                                                                                                                                                                                                                                   | To include this stage in hotspots too.                                                                                                                                                                                                                                                                       | These emission are<br>not to be considered<br>in biodiversity.                                                                                                                                                                                                                                                                | Not accepted<br>(refer to<br>reference<br>documents that<br>chromium has<br>no impact on<br>biodiversity)                                                                                                                            | See reply to comment #12.    |               |
| 17           | Legambiente | 4.6       |                | G                                       | Stock farming and butchers are<br>territorially connected to each<br>other so that tanneries' choices<br>about raw materials areas of<br>origin can significantly decrease a<br>portion of impact on ecosystems<br>and biodiversity. Furthermore,<br>European market more and more<br>cares about animal welfare and<br>sharing choices to decrease or get<br>rid of animal suffering is going to<br>work. Tannery can achieve this<br>goal by selecting raw materials<br>suppliers that take account of<br>management arrangements of<br>stock farms and butchers who<br>provide such raw materials. | To highlight the need not "to drag" into<br>the tanning field impacts caused by<br>stock farming and slaughter in relation<br>to loss of biodiversity and animal<br>welfare. To encourage choice of raw<br>materials by geographical areas and by<br>management arrangements of stock<br>farms and butchers. | Tanning sector has no<br>influence on livestock<br>farming and slaughter<br>and therefore no<br>capacity to influence<br>eventual impacts on<br>biodiversity and<br>animal welfare.<br>Traceability of hides<br>and skins is today<br>possible up to the<br>slaughterhouse only<br>for the vast majority of<br>raw materials. | Not accepted,<br>It's important to<br>consider the<br>different<br>impacts related<br>to the origin of<br>raw materials in<br>this document.<br>It need to be<br>further revised<br>in the final<br>version after the<br>remodelling | See reply to<br>comment #12. |               |
| 18           | Legambiente | 4.6       |                | G                                       | Also vegetable tanning could<br>contribute to preservation of<br>biodiversity, eliminating or<br>reducing the use of chromium<br>and other highly polluting<br>chemicals that persist in the<br>environment. Promote the<br>vegetable tannin extraction from                                                                                                                                                                                                                                                                                                                                          | To be considered it.                                                                                                                                                                                                                                                                                         | Vegetable tannins<br>from fruits residues<br>and renewable<br>resources are<br>considered from line<br>439 to 443. Chemical<br>impacts are<br>considered in the                                                                                                                                                               | Partially<br>accepted (We<br>think it is better<br>to explain both<br>these aspects in<br>the two parts of<br>the document)                                                                                                          | See reply to comment #12.    |               |

| Comment<br># | Reviewer    | Paragraph | Figure / Table | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                                                                                                                                                                                                                                                     | Proposed change                                                                                                                                                                   | TS response (first<br>review)                                                                                                                                                                                                                                        | Closure (first<br>review)                                                                           | TS final response                                                                                   | Final closure |
|--------------|-------------|-----------|----------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------|
|              |             |           |                |                                         | agricultural wastes or by-<br>products, has no weight on<br>biodiversity. Indeed it reduces the<br>impacts of the same waste or by-<br>products. So the statements on<br>vegetable tanning or chrome<br>depend on possible scenarios.                                                                                                                                                                                  |                                                                                                                                                                                   | impact category<br>"Ecotoxicity" and they<br>are specific for each<br>type of chemical.                                                                                                                                                                              |                                                                                                     |                                                                                                     |               |
| 19           | Legambiente | 4.6       |                | G                                       | We don't agree with the claim<br>concerning the chrome where it<br>says "has had a positive impact<br>on biodiversity", because the<br>chromium used in the<br>manufacturing process has been<br>in years cause of contamination,<br>through the wastewater,<br>(especially in rivers or ground<br>waters) with consequent damage<br>to biodiversity, as well as to the<br>healthiness of the water.                   | You need to motivate this statement                                                                                                                                               | See response to comment # 15.                                                                                                                                                                                                                                        | Partially<br>accepted. You<br>have to highlight<br>also the<br>chromium's<br>impact                 | See reply to comment #12.                                                                           |               |
| 20           | Legambiente | 4.6       |                | G                                       | It could be useful a follow-up<br>about current potential, in the<br>light of different existing<br>experiences, to evaluate if<br>actually it's again a trend or a<br>consolidated experience.                                                                                                                                                                                                                        |                                                                                                                                                                                   | Unfortunately we do<br>not have information<br>on the industrial<br>production of such<br>tannins and therefore<br>it is still experimental.                                                                                                                         | Pending, to be<br>explored with<br>companies<br>working on this                                     | It was not possible<br>to cooperate with<br>companies<br>producing these<br>chemical<br>substances. |               |
| 21           | Ugo Pretato | 4.7       | Chemicals      | E                                       | The statement at the first bullet<br>point sounds like "the tannery<br>industry does not know which<br>chemical products are used in<br>tannery processes"                                                                                                                                                                                                                                                             | Clarify/reword                                                                                                                                                                    | Substituted "limited"<br>with "incomplete" and<br>rephrased: " and<br>provenance, such<br>safety data sheet do<br>not provide a full<br>disclosure"                                                                                                                  | Accepted                                                                                            |                                                                                                     |               |
| 22           | SSIP        | 4.7       |                | G                                       | The indicated gaps lead to an incorrect assessment of the impacts related to the product Leather (see Comment n. 10). This should be clearly stated in this section, and may be the basis for a greater involvement of technicians and operators in the sector and a greater willingness to provide primary data, or at least information necessary to a better modelling, with particular reference to the chemicals. | Add a disclaimer about the incorrect<br>assessment of the impacts to the<br>product Leather, deriving from the lack<br>of primary data and of LCI on chemicals<br>used in tannery | Phrase added at the<br>end of the paragraph:<br>"For overcoming these<br>limitations default<br>values are provided in<br>Annex IX. These<br>default values have<br>been developed with<br>suppliers and selected<br>for minimizing erratic<br>or disparate values." | Accepted                                                                                            |                                                                                                     |               |
| 23           | Legambiente | 4.7       |                | G                                       | The mentioned limitations<br>concern priority information<br>about the PEF calculation. So<br>these aspects must be resolved<br>through closer involvement of<br>operators and a greater                                                                                                                                                                                                                               |                                                                                                                                                                                   | See response to comment # 22.                                                                                                                                                                                                                                        | Partially<br>accepted, you<br>have to highlight<br>that there will<br>be a greater<br>commitment to | During the<br>remodelling phase<br>both the leather<br>pilot and the<br>European<br>Commission      |               |

| Comment<br># | Reviewer    | Paragraph | Figure / Table | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Proposed change                                                                                                                                                                            | TS response (first<br>review)                                                                                                                                                         | Closure (first<br>review)                                                                                                                | TS final response                                                                                                                                                                                                                                          | Final closure |
|--------------|-------------|-----------|----------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|              |             |           |                |                                         | willingness to provide the<br>necessary data, as well as the<br>integration of the various existing<br>studies about it.                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                                                                       | communication<br>and data sharing                                                                                                        | worked at the<br>collection of<br>primary data of<br>high quality. We<br>now have PEF<br>Compliant<br>datasets of high<br>quality. See Annex<br>7 page 113.                                                                                                |               |
| 24           | Legambiente | 4.7       |                | G                                       | The statement is not consistent<br>with description contained in<br>Annex IX and the current<br>scientific knowledge on the<br>behaviour of chemicals listed                                                                                                                                                                                                                                                                                                                                                                          | To be explored.                                                                                                                                                                            | See response to comment # 22.                                                                                                                                                         | Partially<br>accepted, you to<br>have highlight<br>that there will<br>be a greater<br>commitment to<br>communication<br>and data sharing | See reply to<br>comment #23.<br>There are still<br>some substances<br>of minor relevance<br>for the leather<br>industry for which<br>there still are no<br>primary data, but<br>good<br>approximations<br>with other<br>substances data<br>have been made. |               |
| 25           | Legambiente | 5.1       |                | т                                       | In choosing the plants, have you<br>considered those who apply best<br>available technologies (BAT) and<br>all the modern technologies to<br>minimize the impact? Have you<br>considered even the best<br>experiences of vegetable tanned<br>using natural dyes, products<br>obtained from the recovery of<br>agricultural waste, etc.                                                                                                                                                                                                | To be explored.                                                                                                                                                                            | This is to follow once<br>the PEFCR is approved<br>and more PEF studies<br>are available.                                                                                             | Accepted                                                                                                                                 |                                                                                                                                                                                                                                                            |               |
| 26           | Ugo Pretato | 5.2       | DQR            | G                                       | The PEFCR do not follow the<br>Dataset Need Matrix of the PEF<br>Guidance Annex E, but apply the<br>default DQR of the PEF Guide.<br>This approach is allowed, but<br>chapter 5.2 shall specify the<br>quality rating to be achieved for<br>each of the five quality levels (e.g.<br>what is the minimum score for<br>being "very good, "good", etc.).<br>Moreover, the PEFCR should<br>already identify which processes<br>need to achieve good or fair<br>quality level, based on the<br>hotspot analysis of the screening<br>study | State that the default DQR of the PEF<br>guide are applied and provide full<br>information on DQR parameters and<br>related processes. Check also<br>provisions in the new PEF guidance v6 | "Stated. The full<br>information on DQR<br>parameters and<br>related processes will<br>be provided after<br>remodelling given data<br>PEF compliant<br>datasets are not<br>known yet" | Pending, to be<br>addressed in the<br>final version<br>after the<br>remodelling                                                          | Updated and<br>made compliant<br>with the latest<br>directives included<br>in Guidance v. 6.3.<br>See tables 31, 32<br>and 34, page 79-<br>90.                                                                                                             | Accepted      |
| 27           | Ugo Pretato | 5.2       | Criteria       | Т                                       | The DQR criteria for TiR, TeR and GR are not suitable for                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Revise the criteria to be more in line<br>with the properties of primary data for                                                                                                          | Revised according to<br>Guidance v6.0                                                                                                                                                 | Accepted                                                                                                                                 |                                                                                                                                                                                                                                                            |               |

| Comment<br># | Reviewer    | Paragraph                  | Figure / Table             | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                                                                                                                                                                    | Proposed change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TS response (first<br>review)                                                                         | Closure (first<br>review)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TS final response                                                                                                              | Final closure                                                                                                                                           |
|--------------|-------------|----------------------------|----------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |             |                            |                            |                                         | application to newly created<br>datasets as the score should be<br>given against the real situation,<br>not against generic metadata                                                                                                                                                                                                  | the foreground system. Check also provisions in the new PEF guidance v6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                |                                                                                                                                                         |
| 28           | Ugo Pretato | 5.3                        | Transport<br>datasets      | т                                       | All PEFCR shall refer to the official<br>secondary datasets provided by<br>the Commission when available.<br>Datasets for transportation<br>processes are already available<br>and accessible via the PEF wiki<br>website                                                                                                             | Refer to the official datasets provided<br>by the Commission for any<br>transportation and electricity<br>processes. Check all PEFCR sections<br>where corrections are needed.<br>Complementary datasets shall be used<br>for processes not covered in the<br>Commission official set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | To be done after PEF<br>compliant datasets are<br>made available.                                     | Pending, to be<br>addressed in the<br>final version<br>after the<br>remodelling                                                                                                                                                                                                                                                                                                                                                                                                                              | Updated and<br>made compliant<br>with the latest<br>directives included<br>in Guidance v. 6.3.<br>See annex 7 page<br>113.     | Accepted.<br>Datasets<br>identified in<br>tables 44-45.<br>Perhaps EURO 3<br>standard is not<br>fully<br>representative<br>of all countries<br>involved |
| 29           | Ugo Pretato | "5.3 and<br>Annex<br>VIII" | Primary data<br>collection | Т                                       | The requirements for primary<br>data collection are overall<br>incomplete. Several information<br>are missing (see next column with<br>proposed change). Annex VIII<br>shall not be limited to elementary<br>flows, but cover also all activity<br>data and related secondary data<br>needed to perform a<br>comprehensive inventory. | <ul> <li>"Revise these sections and expand the content with the following elements:</li> <li>Provide at least two separate templates for the processes identified in table 9 to be filled with primary data, i.e. raw hides transportation and tanning;</li> <li>List all activity data and elementary flows to be investigated in the inventory: note that the current elementary flow list is incomplete, e.g. regionalized water input are missing. Ideally all relevant elementary flows identified during the screening for these two processes should be characterized and pre-defined in the template.</li> <li>The activity data should be complemented by secondary datasets listed in Annex IX</li> <li>Co-products from tannery operations shall be also included in the template in order to do a correct allocation; put in the template relevant information from tables 18-19-20 in §5.9</li> <li>Flow names shall be in line with ILCD nomenclature</li> <li>Provide details on data collection procedures, e.g. period of coverage, etc.</li> </ul> | Please indicate where<br>in the guidance it is<br>required to provide<br>these detailed<br>templates. | The old<br>guidance 5.2<br>was requesting<br>these<br>information e.g.<br>in B.5.3 and B.12<br>(Annex B-VIII). In<br>the new<br>guidance 6.0,<br>minimum<br>information to<br>be provided are<br>specified in<br>2.15.2. The<br>reviewer<br>moreover feels<br>that a detailed<br>template would<br>be helpful to<br>guide applicants<br>and to ensure<br>higher<br>consistency and<br>comparability in<br>PEF information.<br>To be further<br>discussed in the<br>final version<br>after the<br>remodelling | Updated and<br>made compliant<br>with the latest<br>directives included<br>in Guidance v. 6.3.<br>See section 5.1,<br>page 42. | Accepted                                                                                                                                                |

| Comment<br># | Reviewer    | Paragraph | Figure / Table           | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                                                              | Proposed change                                                                                                                                                                                                  | TS response (first<br>review)                                                                                                                                                                                                                                                                                                                                                                        | Closure (first<br>review)                                                                                                                              | TS final response                                                                                                             | Final closure |
|--------------|-------------|-----------|--------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|
|              |             |           |                          |                                         |                                                                                                                                                                                                                                 | <ul> <li>Ensure consistency with the DQR<br/>established for the foreground<br/>system (see comment 27)"</li> </ul>                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                        |                                                                                                                               |               |
| 30           | Ugo Pretato | 5.3       | Electricity<br>modelling | т                                       | The procedure for modelling<br>primary data collection shall<br>apply the electricity modelling<br>rules identified in the related<br>issue paper released in January<br>2016 v.12.                                             | Add a reference to the issue paper for<br>modelling electricity use horizontally<br>across the system. Specify rules for on-<br>site electricity generation. Check also<br>provisions in the new PEF guidance v6 | Added.                                                                                                                                                                                                                                                                                                                                                                                               | Accepted. The<br>electricity<br>modelling rules<br>are however<br>incorporated in<br>the guidance 6.0<br>(§2.8)                                        |                                                                                                                               |               |
| 31           | Legambiente | 5.3       |                          | G                                       | It's important that it be taken into<br>account the content and the<br>recommendations arising from<br>BAT's documents for different<br>steps considered.                                                                       | To include an explicit reference to BAT.                                                                                                                                                                         | BATs apply for<br>tanneries of specific<br>size and significance<br>(class A with daily<br>output greater than 12<br>tons of product)<br>therefore regard only<br>a segment of tanning<br>plants. On the other<br>hand PEFCRs are<br>meant to cover the<br>whole spectrum of<br>tanning activities and<br>plants of all sizes.<br>Finally BATs have not<br>been assessed with an<br>LCA methodology. | Accepted                                                                                                                                               |                                                                                                                               |               |
| 32           | Legambiente | 5.3       |                          | G                                       | It's important that it be taken into<br>account the content and the<br>recommendations arising from<br>BAT's documents for different<br>steps considered                                                                        | To include an explicit reference to BAT.                                                                                                                                                                         | See response to comment # 31.                                                                                                                                                                                                                                                                                                                                                                        | Accepted                                                                                                                                               |                                                                                                                               |               |
| 33           | Legambiente | 5.3       |                          | G                                       | Why have you taken only these two cases into account?                                                                                                                                                                           |                                                                                                                                                                                                                  | During the screening<br>study we decided to<br>test only those<br>recycling processes<br>that are most widely<br>applied at a global<br>scale.                                                                                                                                                                                                                                                       | Pending. it's<br>necessary to<br>integrate the<br>final document<br>with other<br>examples<br>related to<br>various case<br>studies                    | It was not possible<br>to further test the<br>formula, also<br>because it was<br>modified during<br>the remodelling<br>phase. |               |
| 34           | Legambiente | 5.3       |                          | G                                       | Over the type and quantity of<br>emissions it is important to<br>evaluate the territorial and<br>environmental context in which<br>they occur, the population<br>involved, uses of water bodies<br>affected by wastewater, etc. | To include these parameters in the necessary information.                                                                                                                                                        | The permit of the<br>installation of the<br>related industrial<br>activity takes into<br>account and reports all<br>of the requested<br>evaluation criteria. It is<br>not required to report<br>them here.                                                                                                                                                                                           | Not accepted. In<br>the impact<br>assessment it is<br>important to<br>consider the<br>environmental<br>context in which<br>the activity<br>takes place | Out of the scope<br>of the PEF<br>initiative.                                                                                 |               |

|              |          |           |                | Type of                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                                   |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                     |               |
|--------------|----------|-----------|----------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Comment<br># | Reviewer | Paragraph | Figure / Table | comment<br>(i.e. G, T,<br>E) | Comment (justification for<br>change)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Proposed change                                                                         | TS response (first<br>review)                                     | Closure (first<br>review)                                                                                                                                                                                                                                                                  | TS final response                                                                                                                                                                                                                                   | Final closure |
| 35           | SSIP     | 5.3       | Table 10       | Т                            | "The dataset used to describe the<br>Basic Chromium Sulphate (BCS)<br>seems incorrect. The chromium<br>oxide CrO3, is the oxide of<br>hexavalent chromium that is not<br>involved in the production of the<br>chrome tanning salt. In fact it's<br>known that all the chromium salts<br>are prepared from chromite,<br>mineral of formula FeOCr2O3,<br>found in relatively abundant form<br>in the earth's crust. After an<br>oxidation reaction, carried out in<br>closed reactors that provide the<br>formation of dichromate as an<br>intermediate, the chromium basic<br>sulfate is obtained by reduction<br>with sulfur dioxide or sulfite.<br>Since the oxidation and reduction<br>reactions cancel each other, also<br>in terms of residues, the overall<br>reaction, starting from the<br>Chromite can be written as<br>follows: Cr2O3 (from Chromite) +<br>2H2SO4 = 2Cr(OH)SO4 + H2O.<br>According to this reaction, for the<br>production of 1g of Basic<br>Chromium Sulphate 0,46g of<br>Cr2O3 from Chromite and 0,59g<br>of Sulphuric Acid are needed.<br>However they are still to quantify<br>the use of sodium carbonate,<br>soda, air and reducing agent, as<br>well as the amount of heat<br>needed to melt the chromite. As<br>Chromite (as ""ore concentrate"")<br>is present in the Ecoinvent<br>dataset of LCI for chemicals, a<br>better evaluation of BCS could be<br>carried out. Alternatively you<br>might consider the BSC<br>production reaction carried out<br>by reduction of sodium<br>dichromate in acid medium with<br>glucose, sulfur dioxide or sulfite.<br>For these processes, you can<br>found useful information in the<br>literature to allow better<br>modeling for BSC." | Change the modelling of the BCS,<br>starting from Chromite or from Sodium<br>Dichromate | Proxy for BCS replaced<br>with primary data<br>from the producer. | "Pending, to be<br>addressed in the<br>final version<br>after the<br>remodelling. At<br>the moment it<br>doesn't seem<br>that you have<br>replaced the<br>proxy for BCS<br>with primary<br>data for the<br>producer.<br>Maybe, in short<br>time, you are<br>able to include<br>such data?" | During the<br>remodelling phase<br>both the leather<br>pilot and the<br>European<br>Commission<br>worked at the<br>collection of<br>primary data of<br>high quality. We<br>now have EF<br>Compliant<br>datasets of high<br>quality also for<br>BCS. | Accepted      |

| Comment<br># | Reviewer    | Paragraph           | Figure / Table               | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                                                                                                                    | Proposed change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TS response (first<br>review)                                                                                                              | Closure (first<br>review)                                                       | TS final response                                                                                                                                                    | Final closure |
|--------------|-------------|---------------------|------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 36           | Ugo Pretato | 5.4 and<br>Annex IX | Background<br>secondary data | Т                                       | The requirements for secondary<br>background data application are<br>overall incomplete. Several<br>information are missing (see next<br>column with proposed change)                                                                                                                 | <ul> <li>"Revise these sections and expand the content with the following elements:</li> <li>The list in Annex IX shall include all datasets officially provided by the Commission once available</li> <li>At the moment, official datasets for transportation and electricity are already available, hence these shall be referenced in Annex IX</li> <li>All datasets shall be accompanied by a DQR assessment, including the values of each of the individual parameters of the DQR formula; this is essential for the PEFCR applicants in order to determine the total DQR of their product systems</li> <li>If a process is not covered by the official Commission datasets, alternative datasets shall be provided meeting the PEF requirements and accompanied by DQR information. The representative product modelling datasets of other ongoing PEF pilots (e.g. meat, feed) could be also used to complement the background datasets list. Check also provisions in the new PEF guidance v6"</li> </ul> | See response to<br>comment # 28.                                                                                                           | Pending, to be<br>addressed in the<br>final version<br>after the<br>remodelling | Updated and<br>made compliant<br>with the latest<br>directives included<br>in Guidance v. 6.3<br>See annex 7 page<br>113 and tables 31,<br>32 and 34, page<br>79-90. | Accepted      |
| 37           | Ugo Pretato | 5.5                 | chemicals and animal farming | т                                       | "Unless primary data on<br>chemicals production and animal<br>farming are made available"<br>means that the PEFCR should also<br>provide templates and related<br>information for collecting primary<br>data for this processes. This<br>would be fine but may demand<br>high efforts | Clarify the use of primary data for<br>chemicals production and animal<br>farming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | To be done after<br>remodelling in order<br>to evaluate the use of<br>primary data based on<br>the effective relevance<br>of each process. | Pending, to be<br>addressed in the<br>final version<br>after the<br>remodelling | Updated and<br>made compliant<br>with the latest<br>directives included<br>in Guidance v. 6.3.<br>See section 5.1,<br>page 42.                                       | Accepted      |
| 38           | Legambiente | 5.8                 |                              | т                                       | EoL formula not consistently<br>applied throughout the supply<br>chain (it is often applied merely<br>to the final product and not to<br>manufacturing waste).                                                                                                                        | Update on the ongoing work (ppt<br>presentation).<br>Consider this statement set out in the<br>document by Dr. Michele Galatola<br>"Update on the ongoing work" (ppt<br>presentation). Check also provisions in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Paragraph 5.8 refers to<br>the final product (e.g.<br>shoes, garments, etc.)<br>end of life, not to the<br>end of life formula.            | Accepted                                                                        |                                                                                                                                                                      |               |

| Comment<br># | Reviewer    | Paragraph | Figure / Table         | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Proposed change                                                                                                                                                                                                                                                                                                                                                                                 | TS response (first<br>review)                                                                                                                                                                                                                                                         | Closure (first<br>review)                                                                                                                                                                                                                                                                                                                             | TS final response                                                                                                                                                                                                                                                                                                                                                                                               | Final closure                                                                                                                                                                                                                                                                       |
|--------------|-------------|-----------|------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |             |           |                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the new PEF guidance v6 (The CFF formula is now required)                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |
| 39           | Ugo Pretato | 6         | Tables 21-22-<br>23-24 | Т                                       | The benchmark values will have<br>to be updated after the<br>remodelling exercise in 2017. An<br>introduction to the benchmark<br>description is also missing, before<br>presenting the tables.                                                                                                                                                                                                                                                                                                                                                                                       | Add a comment/introduction on the<br>final benchmark results. Add to the<br>tables separate values for climate<br>change due to dLUC, as foreseen in<br>§4.5Check also provisions in the new<br>PEF guidance v6                                                                                                                                                                                 | According to the latest<br>recommendation<br>issued by Dr. Galatola,<br>the benchmark will<br>not be applicable to<br>intermediate<br>products.                                                                                                                                       | The benchmark<br>will not be<br>allowed, but the<br>final PEFCR will<br>have to report<br>the<br>characterized<br>results for each<br>representative<br>product,<br>updated after<br>the remodelling<br>(see guidance<br>6.0, §2.16.1). To<br>be checked in<br>the final version                                                                      | Updated and<br>made compliant<br>with the latest<br>directives included<br>in Guidance v. 6.3.<br>Benchmark<br>excluded since the<br>guidance states:<br>"No benchmarking<br>is allowed for<br>intermediate<br>products. The<br>reporting of the<br>characterised<br>results calculated<br>for each<br>intermediate RP is<br>optional in the<br>PEFCR, but<br>mandatory in the<br>PEF study and PEF<br>report." | Noted and<br>accepted                                                                                                                                                                                                                                                               |
| 40           | Legambiente | 6         |                        | G                                       | To refer comments to this section to final data update                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                 | See response to<br>comment # 39.                                                                                                                                                                                                                                                      | See closure to<br>#39                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |
| 41           | Legambiente | 6         |                        | G                                       | To comments to this section<br>should refer when the final data<br>updates will be available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                 | See response to comment # 39.                                                                                                                                                                                                                                                         | See closure to<br>#39                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |
| 42           | Ugo Pretato | 7         | Interpretation         | G                                       | <ul> <li>The whole section on interpretation has some unclear aspects and needs improvement:</li> <li>The applicability of these PEFCR for external comparisons/comparative assertions is not fully clear and somehow contradictory; for example it is discouraged in the benchmark section (lines 829-832) while it seems to be allowed here in section 7 (lines 898-899) and also in section 1;</li> <li>The statement in lines 901-902 about the supposed recycling nature of hides and skins in the context of meat industry is not in line with the agreed allocation</li> </ul> | Expand the section and provide<br>clarification. In particular, state clearly<br>whether and under what circumstances<br>these PEFCR support or forbid<br>comparisons and comparative<br>assertions between leather products.<br>The reviewer does not support<br>comparisons between intermediate<br>products, therefore recommends<br>keeping the content as in section 6 at<br>lines 829-832 | The benchmark will be<br>removed therefore the<br>noted contradiction<br>does no longer<br>emerge<br>• Ok, sentence<br>removed from<br>"as the<br>processing" to<br>"only the<br>chemical data"<br>• We don't<br>understand why<br>the reviewer<br>does not<br>support<br>comparison. | Pending, to be<br>addressed in the<br>final version<br>after the<br>remodelling.<br>Note: the<br>reviewer does<br>not support<br>comparisons<br>and comparative<br>assertions when<br>the systems are<br>not equivalent.<br>This would be<br>the case of<br>intermediate<br>products, unless<br>the use and EoL<br>stages are fully<br>characterized. | Updated and<br>made compliant<br>with the latest<br>directives included<br>in Guidance v. 6.3.<br>Interpretation<br>section excluded.                                                                                                                                                                                                                                                                           | Noted, however<br>section 3.6 does<br>not specify<br>whether and<br>how<br>comparisons<br>are allowed.<br>Comparisons<br>should be<br>allowed only<br>when the<br>downstream life<br>cycle stages are<br>included in the<br>system<br>boundaries.<br>Please add this<br>information |

| Comment<br># | Reviewer    | Paragraph | Figure / Table | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                                                                   | Proposed change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TS response (first<br>review)                                                                                               | Closure (first<br>review)                                                       | TS final response                                                                                                                                                                                                                                                                                                                           | Final closure |
|--------------|-------------|-----------|----------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|              |             |           |                |                                         | <ul> <li>rules at the slaughterhouse<br/>(see also comment 8 point<br/>b)</li> <li>the last paragraph in lines<br/>921-925 about the<br/>decreasing order or<br/>reliability is unclear"</li> </ul>                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             |                                                                                 |                                                                                                                                                                                                                                                                                                                                             |               |
| 43           | Ugo Pretato | 8         | Communication  | G                                       | This section is still incomplete.<br>Results from the communication<br>tests are missing. Furthermore, it<br>is unclear why "focusing on<br>products environmental footprint<br>improvement should be<br>misleading (lines 956-957)" | Complete this section. Assess whether<br>the establishment of performance<br>classes is meaningful and update<br>accordingly section 6 (lines 833-834).<br>The reviewer is quite sceptical about<br>the opportunity to fix performance<br>classes, hence a robust justification<br>would be needed in case the TS wishes<br>to do so. In addition, review the<br>position on performance tracking. In<br>the reviewer's opinion, this should be<br>always a default application in any<br>PEFCR | This section will be<br>removed from the<br>PEFCR and provided as<br>a separate document<br>as defined in Guidance<br>v6.0. | Accepted                                                                        |                                                                                                                                                                                                                                                                                                                                             |               |
| 44           | Ugo Pretato | 9         | Verification   | G                                       | The whole section on verification is still to be developed.                                                                                                                                                                          | Add verification requirements based on<br>the indications of PEF guide and<br>differentiating according to the<br>intended application. Check also<br>provisions in the new PEF guidance v6                                                                                                                                                                                                                                                                                                     | This section will be<br>removed from the<br>PEFCR as defined in<br>Guidance v6.0.                                           | Accepted                                                                        |                                                                                                                                                                                                                                                                                                                                             |               |
| 45           | Ugo Pretato | 11        | Screening      | E                                       | Supporting information shall<br>include the final screening report<br>with consolidated results and<br>hotspot analysis after the<br>remodelling exercise                                                                            | List the screening report as key<br>supporting information to the PEFCR.<br>Make sure the final screening report<br>will be available with the PEFCR after<br>the representative products<br>remodelling                                                                                                                                                                                                                                                                                        | Will be included after<br>the remodelling<br>exercise.                                                                      | Pending, to be<br>addressed in the<br>final version<br>after the<br>remodelling | "Updated and<br>made compliant<br>with the latest<br>directives included<br>in Guidance v. 6.3.<br>Mandatory<br>sentence included:<br>""The screening<br>study is available<br>upon request to<br>the TS coordinator<br>that has the<br>responsibility of<br>distributing it with<br>an adequate<br>disclaimer about<br>its limitations.""" | Accepted      |
| 46           | Ugo Pretato | Annex III | Benchmark      | G                                       | The description of the steps<br>undertaken to define the<br>benchmark is too vague                                                                                                                                                   | Expand the annex. Keep the same<br>structure in bullet points and fill with<br>information from the screening report                                                                                                                                                                                                                                                                                                                                                                            | Not relevant after the<br>removal of the<br>benchmark.                                                                      | Pending, to be<br>addressed in the<br>final version<br>after the<br>remodelling | Updated and<br>made compliant<br>with the latest<br>directives included<br>in Guidance v. 6.3.<br>Benchmark<br>excluded since<br>"No benchmarking                                                                                                                                                                                           | Accepted      |

| Comment<br># | Reviewer    | Paragraph  | Figure / Table        | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                         | Proposed change                                                                                                                                                                                                                                                                                               | TS response (first<br>review)                                                                                                                     | Closure (first<br>review)                                                | TS final response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Final closure |
|--------------|-------------|------------|-----------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|              |             |            |                       |                                         |                                                                                                            |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                   |                                                                          | is allowed for<br>intermediate<br>products. The<br>reporting of the<br>characterised<br>results calculated<br>for each<br>intermediate RP is<br>optional in the<br>PEFCR, but<br>mandatory in the<br>PEF study and PEF<br>report."                                                                                                                                                                                                                                                                                                                                                             |               |
| 47           | Ugo Pretato | Annex IV   | Upstream<br>scenarios | G                                       | As above, the description looks<br>too vague and not really useful<br>for the PEFCR applicant              | Expand the annex. Refer to the<br>screening report for the description of<br>processes included in the upstream<br>stages of the four representative<br>products. In alternative, copy and paste<br>relevant information from the<br>screening report, e.g. from chapter 4<br>(life cycle inventory analysis) | Inserted graphs from<br>chapter 4 of the<br>screening report.                                                                                     | Accepted                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 48           | Legambiente | Annex VIII |                       | т                                       | Tanning industry is often<br>associated with presence in<br>wastewater of perfluoroalkylated<br>substances | Complete the list with<br>perfluoroalkylated substances                                                                                                                                                                                                                                                       | There is no official<br>standard method to<br>measure PFAS in<br>tannery wastewaters.<br>These substances are<br>restricted in EU<br>legislation. | Not accepted,<br>It's important to<br>consider PFAS in<br>this document. | The PFAS problem<br>is not connected<br>to the leather<br>sector. It affected<br>Arzignano tanning<br>district because of<br>a company<br>producing pans<br>which released<br>PFAS in the water<br>which was then<br>entering in<br>tanneries. See POP<br>regulation<br>850/2004, Reg<br>1907/2006 SVHC,<br>Reg 1907/2006-<br>REACH Annex XVII<br>Entry 68, DM<br>06/07/2016,<br>Regione Veneto:<br>provvedimento<br>37/2016 e 5/2016,<br>Regione Veneto: D<br>Reg 101 2017 and<br>EN ISO 23702-1<br>Leather - Organic<br>fluorine Part 1:<br>Determination of<br>the non-volatile<br>compound |               |

| Comment<br># | Reviewer     | Paragraph   | Figure / Table                                | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Proposed change                                                                                                                                                           | TS response (first<br>review)                                                    | Closure (first<br>review)                                                                                                                                                                   | TS final response                                                                                                                                                                                                                                             | Final closure |
|--------------|--------------|-------------|-----------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|              |              |             |                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                           |                                                                                  |                                                                                                                                                                                             | content by<br>extraction method<br>using liquid<br>chromatography.                                                                                                                                                                                            |               |
| 49           | SSIP         | Annex IX    |                                               | G, T                                    | This Annex presents some<br>correlations between<br>"Representing Substances" and<br>"Process from Database," which<br>leave some doubt (for example<br>that relating to the BCS already<br>discussed before, or those related<br>to dyes and pigments,). However<br>taking into account the lack of LCI<br>data and the poor quality of<br>available data, a better result<br>could be achieved through the<br>contribution of technical experts<br>of chemical tanning products,<br>professional associations and<br>research institutes. As it is<br>expected a long process, you<br>should schedule immediate<br>actions to improve This Annex,<br>even in relation to the<br>importance of these data on the<br>validity of the PEF. |                                                                                                                                                                           | Annex improved with<br>primary data from<br>major producers.                     | Pending, to be<br>addressed in the<br>final version<br>after the<br>remodelling. A<br>big effort has to<br>be carried out to<br>improve the<br>quality of data<br>addressed by<br>Annex IX. | During the<br>remodelling phase<br>both the leather<br>pilot and the<br>European<br>Commission<br>worked at the<br>collection of<br>primary data of<br>high quality. We<br>now have PEF<br>Compliant<br>datasets of high<br>quality. See Annex<br>7 page 113. | Accepted      |
| 50           | Ugo Pretato  | Annex X     | Test of the EoL<br>formula on by-<br>products | G                                       | Annex X shall include any further<br>EoL formula applied in addition to<br>the baseline formula. The<br>exercise on the EoL formula<br>applied to by-products, although<br>formally correct and well<br>documented, can be perceived as<br>misleading regarding the<br>allocation approach implemented<br>in these PEFCR. It is moreover in<br>contrast with the provision of the<br>cattle working group report which<br>is horizontally adopted across PEF<br>pilots affected by cattle issues                                                                                                                                                                                                                                          | Remove the exercise from Annex X. The<br>content may be kept in a separate<br>document and brought to the<br>discussion within the PEF SC, TAB or<br>other working groups | Ok, removed. We have<br>inserted a note at the<br>beginning of<br>paragraph 5.9. | Accepted                                                                                                                                                                                    |                                                                                                                                                                                                                                                               |               |
| 51           | Carlo Brondi | Acronyms    |                                               | E                                       | Some mistake in CH definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Add proper definition                                                                                                                                                     |                                                                                  |                                                                                                                                                                                             | Removed. This<br>acronym was not<br>necessary                                                                                                                                                                                                                 |               |
| 52           | Carlo Brondi | All         |                                               | E                                       | The grey text from PEF Guidance<br>is still present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Delete grey text                                                                                                                                                          |                                                                                  |                                                                                                                                                                                             | Removed.                                                                                                                                                                                                                                                      |               |
| 53           | Carlo Brondi | Definitions |                                               | G                                       | Despite the fact PEF is oriented to<br>leather specialists, is better to<br>avoid ambiguity by using only<br>EN15897:2014 extract.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Please indicate leather origin as source from animal species                                                                                                              |                                                                                  |                                                                                                                                                                                             | Definitions of<br>"hide" and "skin"<br>added to the list.                                                                                                                                                                                                     |               |

| Comment<br># | Reviewer     | Paragraph | Figure / Table | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                               | Proposed change                                                                                                                                                                                                                                                                                                          | TS response (first<br>review) | Closure (first<br>review) | TS final response                                                                                                                                                                                                                                                             | Final closure |
|--------------|--------------|-----------|----------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 54           | Carlo Brondi | 2.2       |                | E                                       | The reference to web pages could<br>be included in reference<br>paragraph or as footnote                                                                                         | Please put the mention to web page as footnote or reference.                                                                                                                                                                                                                                                             |                               |                           | Done.                                                                                                                                                                                                                                                                         |               |
| 55           | Carlo Brondi | 2.3       |                | E                                       | Please revise the review panel description                                                                                                                                       | Please add within the table: "Carlo<br>Brondi, CNR - National Research<br>Council, Researcher/Life Cycle<br>Assessment (LCA) expert"                                                                                                                                                                                     |                               |                           | Done.                                                                                                                                                                                                                                                                         |               |
| 56           | Carlo Brondi | 2.4       |                | G                                       | The PEF guide is intended to<br>provide also a support for the<br>foreground sector such as<br>footwear and fashion sector. It<br>could be important to emphasize<br>such focus. | Please add "Furthermore PEF studies<br>provide the basis to systematize<br>environmental knowledge in the<br>foreground sectors (e.g. fashion<br>sector). PEF review has been intended<br>to provide transparency and clearness<br>to PEF studies in order to be modularly<br>implemented within other sectoral<br>PEF." |                               |                           | Approved. Phrase<br>added.                                                                                                                                                                                                                                                    |               |
| 57           | Carlo Brondi | 3.2       |                | Т                                       | PEF guidance states in product<br>and scope classification that in<br>preferable to perform different<br>screening studies in case PEF<br>application is different.              | In case the screening study is<br>performed for a limited set of leather<br>type is important to emphasize within<br>paragraph 3.2 that reference products<br>have a very similar function or<br>application. Otherwise explicit<br>mentions have to be reported (e.g. sole<br>leather vs fashion leather)               |                               |                           | In the screening<br>study performed,<br>all 4<br>Representative<br>Products were<br>separately<br>evaluated. It was<br>performed based<br>on primary data<br>collected at more<br>than 30 tanneries<br>producing<br>products covering<br>all RPs possible<br>combinations.    |               |
| 58           | Carlo Brondi | 3.2       |                | Т                                       | PEF guidance states that other<br>similar product categories that<br>are not included in the PEF scope<br>should be explicitly mentioned                                         | Please consider to include descriptions<br>of other similar products that are not<br>covered by the present PEF (i.e.<br>categories including polymeric fabric<br>similar to leather)                                                                                                                                    |                               |                           | Added the<br>following phrase:<br>"Are excluded<br>from the present<br>PEFCR all leathers<br>produced from<br>hides or skins of<br>animals other than<br>those slaughtered<br>for human<br>consumption, as<br>well as any<br>synthetic<br>substitute material<br>to leather." |               |
| 59           | Carlo Brondi | 3         |                | т                                       | PEF should justify why bovines<br>that are raised for milk and meat<br>production represent the 99% of<br>the global production.                                                 | Please introduce a brief reference as footnote explaining such assumption.                                                                                                                                                                                                                                               |                               |                           | The phrase refers<br>not only to bovine,<br>but also to ovine<br>and caprine<br>leathers. It is                                                                                                                                                                               |               |

| Comment<br># | Reviewer     | Paragraph | Figure / Table | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Proposed change                                                                                                                                                                                                                                                                                                                  | TS response (first<br>review)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Closure (first<br>review) | TS final response                                                                                                                                                                       | Final closure |
|--------------|--------------|-----------|----------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|              |              |           |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | meant to state<br>that leathers from<br>those animal<br>origins cover 99%<br>of the leather<br>market. It is not an<br>assumption.<br>Source added:<br>"(source ICT)"                   |               |
| 60           | Carlo Brondi | 3         |                | т                                       | Furthermore no explanation for<br>modelling intermediate situations<br>(meat production without milk<br>production etc.) hasn't been<br>provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | If possible provide brief indication for modelling intermediate situations.                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | This comment<br>seems to refer to<br>the allocation<br>method for<br>upstream phase<br>which was defined<br>by the Cattle<br>Model Working<br>Group and which<br>cannot be<br>modified. |               |
| 61           | Carlo Brondi | 3.3       | table 6        | Т                                       | In general terms foreground<br>sector can use data on leather<br>both in terms of square meter<br>and mass. PEFCR is unclear about<br>the way to assess weight. In<br>particular PEFCR seems to compel<br>weight calculation by a<br>compulsory use of square/mass<br>conversion factor. It could be<br>instead relevant to include an<br>explicit invitation to declare<br>leather weight by specifying that<br>producers can preferably use<br>conversion factors or other<br>methods that are based on<br>primary data. In all such cases,<br>such methods need to be strictly<br>justified to the PEF reviewer. | "Please include the phrase ""1 square<br>metre of finished leather as routinely<br>measured at tannery including its<br>weight"" Please provide a better<br>description on how declare leather<br>weight and how calculate leather<br>weight (e.g. in case producer can<br>provide direct weighting of the finished<br>leather)" | Already specified<br>before Table 7<br>(reference flows per<br>representative<br>product) there is a<br>phrase specifying that<br>conversion factors<br>shall be used only in<br>case there are no<br>primary data: "Unless<br>specific conversion<br>factors from weight of<br>raw hides and skins to<br>surface of finished<br>leather are available,<br>the ones reported in<br>Table 7 shall be used.<br>The conversion factors<br>provided are average<br>for each kind of<br>animals and do not<br>different provenience<br>or different species." |                           |                                                                                                                                                                                         |               |
| 62           | Carlo Brondi | 3.3       |                | E                                       | mistake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Please correct "whether"                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | Corrected                                                                                                                                                                               |               |
| 63           | Carlo Brondi | 3.4       |                | т                                       | Provision of quantitative data for<br>general process can create<br>ambiguity. Preservation can vary<br>from company to company and<br>include specific operational<br>conditions. As reported,                                                                                                                                                                                                                                                                                                                                                                                                                     | Please delete quantitative data on hide/skin preservation in the table.                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | Deleted.                                                                                                                                                                                |               |

|              |              |           |                | Type of                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                        |                               |                           |                                                                                                                                                                                                                                                                                       |               |
|--------------|--------------|-----------|----------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Comment<br># | Reviewer     | Paragraph | Figure / Table | comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Proposed change                                                                                                                                                                                                        | TS response (first<br>review) | Closure (first<br>review) | TS final response                                                                                                                                                                                                                                                                     | Final closure |
|              |              |           |                |                              | preservation activity is normally<br>performed by slaughterhouse or<br>by specific companies.<br>Nevertheless, its execution is<br>specifically devoted for raw hide<br>tanning process. For such reason,<br>prospectively, such operation<br>should be included in the core<br>process.                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        |                               |                           |                                                                                                                                                                                                                                                                                       |               |
| 64           | Carlo Brondi | 3.5       |                | E                            | The reference to web pages and<br>Annex could be included in<br>reference paragraph or as<br>footnote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Please put the mention to web page and annex as footnote or reference.                                                                                                                                                 |                               |                           | Done.                                                                                                                                                                                                                                                                                 |               |
| 65           | Carlo Brondi | 3.6       |                | G                            | Commercial database can present<br>also lack in dismissal process for<br>specific sectoral waste flows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Please include a sentence mentioning<br>the lack in commercial database of data<br>for dismissal of specific chemical waste<br>flow                                                                                    |                               |                           | Done.                                                                                                                                                                                                                                                                                 |               |
| 66           | Carlo Brondi | 5.3       | Table 20       | G                            | The use of default value should<br>be conservative, political or<br>scientifically sounded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Please provide a brief description for<br>criteria according to quantitative<br>default distances for transportation<br>have been determined.                                                                          |                               |                           | Table included in<br>Annex 7.                                                                                                                                                                                                                                                         |               |
| 67           | Carlo Brondi | 5.3       |                | G                            | <ul> <li>"Raw hides and skin preservation could be not included in general datasets. Two scenarios cold be considered</li> <li>A. In case preservation is included as part of slaughtering phase by a general allocation, such could be incorrect. In fact, preservation activities should be allocated for the 100% to leather life cycle.</li> <li>B. In case preservation activities are not included in the slaughtering phase and dataset is referred to fresh hides without preservation a further modelling shall be performed. Such modelling should be based on assumptions."</li> </ul> | Please clarify if preservation phase has<br>been included in general dataset and<br>how has been allocated. In case B<br>provide general assumptions for raw<br>hides and skin preservation phase in<br>paragraph 5.3. |                               |                           | Preservation<br>phase impact was<br>quantified in the<br>screening study<br>with primary data.<br>It resulted to be<br>not relevant and<br>was then excluded<br>from<br>requirements of<br>the PEFCR. For this<br>reason, no<br>datasets were<br>made available by<br>the Commission. |               |
| 68           | Carlo Brondi | 5.8       | table 24       | E                            | The use of default value should<br>be conservative, political or<br>scientifically sounded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Please provide a brief reference or<br>description for the calculation method<br>for default allocation values for animal<br>farming co-products according to<br>process type.                                         |                               |                           | This is already<br>described in the<br>Guidance. We<br>were explicitly<br>asked not to                                                                                                                                                                                                |               |

| Comment<br># | Reviewer     | Paragraph | Figure / Table         | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Proposed change                                                                                                                                                                                                                                                                                                                                                    | TS response (first<br>review)                             | Closure (first<br>review) | TS final response                                                                                                                                                                             | Final closure |
|--------------|--------------|-----------|------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|              |              |           |                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                    |                                                           |                           | further analyse<br>topics that are<br>already regulated<br>by the Guidance,<br>but to just include<br>a reference to the<br>Guidance itself.                                                  |               |
| 69           | Carlo Brondi | 5.8       | table 25               | E                                       | Mistake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Please correct mistake in the<br>antepenult line.                                                                                                                                                                                                                                                                                                                  |                                                           |                           | Corrected.                                                                                                                                                                                    |               |
| 70           | Carlo Brondi | 6.1       |                        | E                                       | Use the word shall instead than is                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Please use the phrase "The following<br>formula shall be used to model the<br>recycled content"                                                                                                                                                                                                                                                                    |                                                           |                           | This was a<br>mandatory section<br>written by the<br>European<br>Commission. We<br>will inform the<br>Commission about<br>the mistake and<br>ask for a change.                                |               |
| 71           | Carlo Brondi | 7.3       |                        | G                                       | The problem of assessing<br>biodiversity loss is an issue for<br>leather sector and can be a<br>raising issue to public opinion to<br>clearly address local problems<br>together with global chain issues.<br>A partial solution could be the use<br>of the USE-Tox model to address<br>biodiversity loss. Such indicator is<br>accepted at global level,<br>furthermore it involves a reliable<br>scientific basis and can be used to<br>further address knowledge in<br>leather chain | Please consider to prospectively<br>elaborate USE-tox indicator in order to<br>define a target impact category on<br>biodiversity loss                                                                                                                                                                                                                             |                                                           |                           | USEtox model was<br>already excluded<br>from the PEF<br>initiative because<br>of some<br>methodological<br>mistakes. For this<br>reason, it cannot<br>be used to<br>quantify<br>biodiversity. |               |
| 72           | Carlo Brondi | 9         |                        | G                                       | The list of references appears to<br>be quite limited compared to the<br>number of works that have been<br>mentioned                                                                                                                                                                                                                                                                                                                                                                    | Please verify the completeness of<br>references, by including eventual<br>footnote literature. i.e. study from<br>Bakalis et al (page 149) seems to miss                                                                                                                                                                                                           |                                                           |                           | References added.                                                                                                                                                                             |               |
| 73           | Carlo Brondi | ANNEX 4   |                        | E                                       | PEFCR should provide support to<br>sectoral specialists and LCA<br>specialist. Prescription in its use<br>should be a common asset for all<br>PEFCRs and not for a single<br>PEFCR. Strict prescriptions can<br>limit the use of the PEF.                                                                                                                                                                                                                                               | Please substitute the phrase "the<br>results for leather should never be used<br>be used as an argument for preferring<br>another material" "this PEFCR guide is<br>intended to provide support in proper<br>identification of environmental issues<br>and bottlenecks for leather chain and<br>not for a direct comparison with other<br>substituting materials " |                                                           |                           | Modified with the<br>following phrase<br>"This PEFCR shall<br>not be used for a<br>direct comparison<br>with other<br>substituting<br>materials."                                             |               |
| 74           | Carlo Brondi | ANNEX 6   | "TABLE 39<br>TABLE 41" | G                                       | PEFCR could address close<br>collaboration between different<br>players within leather chain and<br>further standard development in<br>this sector. However<br>standardization by animal type or                                                                                                                                                                                                                                                                                        | "Prospectively table 39 and table 41 for<br>the calculation of carbon storage<br>should be refined by introducing:                                                                                                                                                                                                                                                 | We do not have<br>information and data<br>of such detail. |                           |                                                                                                                                                                                               |               |

| Comment<br># | Reviewer     | Paragraph | Figure / Table | Type of<br>comment<br>(i.e. G, T,<br>E) | Comment (justification for change)                                                                                                                                                                                                                                                                             | Proposed change                                                                                                                                                                                                                                                                                | TS response (first<br>review)                   | Closure (first<br>review) | TS final response                                                                                                                                                                                                    | Final closure |
|--------------|--------------|-----------|----------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|              |              |           |                |                                         | representative compound<br>substance could discriminate<br>green policies of specific<br>producers on the same area                                                                                                                                                                                            | <ul> <li>Differences between animal type<br/>within each mammal category<br/>(e.g. bovine type)</li> <li>Differences according to sectoral<br/>standards and agreements for<br/>the identification of the carbon<br/>content according to a more<br/>reliable chemical composition"</li> </ul> |                                                 |                           |                                                                                                                                                                                                                      |               |
| 75           | Carlo Brondi | ANNEX 7   |                | E                                       | mistake                                                                                                                                                                                                                                                                                                        | Correct "Ecoinvent"                                                                                                                                                                                                                                                                            |                                                 |                           | Corrected.                                                                                                                                                                                                           |               |
| 76           | Carlo Brondi | ANNEX 7   | TABLE 42       | E                                       | Use the same nomenclature for chemicals                                                                                                                                                                                                                                                                        | "Please substitute ""NA3HEDTA"" with<br>""<br>Droxyethylethylenediaminetriaacetate<br>(Na3HEDTA)""remove CAS code or add<br>CAS code for all chemicals"                                                                                                                                        | NA3HEDTA<br>substituted. CAS<br>number removed. |                           |                                                                                                                                                                                                                      |               |
| 77           | Carlo Brondi | ANNEX 8   |                | E                                       | mistake                                                                                                                                                                                                                                                                                                        | please clarify origin                                                                                                                                                                                                                                                                          |                                                 |                           | Corrected.                                                                                                                                                                                                           |               |
| 78           | Carlo Brondi | ANNEX 8   | TABLE 51       | E                                       | mistake                                                                                                                                                                                                                                                                                                        | please correct "effluent" in the bottom<br>line                                                                                                                                                                                                                                                |                                                 |                           | Corrected.                                                                                                                                                                                                           |               |
| 79           | Carlo Brondi | ANNEX 8   |                | G                                       | It's unclear why to add a<br>reference to an alternative mass<br>allocation method 50/50 while<br>the proposed PEFCR method<br>constitutes an overcoming of<br>such allocation method. Such<br>mention can introduce confusion<br>by suggesting alternative<br>methods within the same<br>certification scheme | The title can be changed in "Differences<br>between PEFCR and EPD allocation<br>methods for grain and flesh bovine/calf<br>pelts and leather assessments."                                                                                                                                     |                                                 |                           | Title changed:<br>"Differences<br>between PEFCR<br>and EPD allocation<br>methods for<br>bovine grain and<br>split leather". Also<br>added the<br>definitions of<br>"grain" and "split"<br>in definitions<br>section. |               |
| 80           | Carlo Brondi | ANNEX 8   |                | G                                       | Allocation uncertainty for raw<br>material (average distribution of<br>co-products, by-products and<br>waste) can seriously alter the<br>results                                                                                                                                                               | Prospectively it could be useful to<br>assess uncertainty value from<br>allocation due to raw material<br>separation in order to compare such<br>uncertainty with other uncertainty<br>sources                                                                                                 |                                                 |                           | We do not have<br>information and<br>data of such<br>detail.                                                                                                                                                         |               |

900

## 901 ANNEX 4 - Reasoning for development of PEFCR

902 This PEFCR document aims at setting the rules for evaluating the EF for the following type of leather used in 903 the EU:

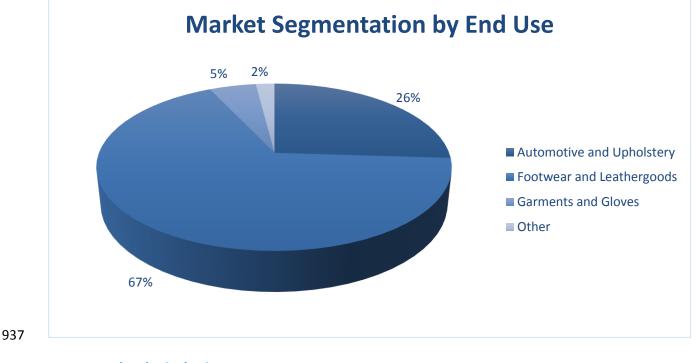
- Leather for automotive interiors and furniture upholstery;
- Leather for leather goods and footwear excluding soles;
- 906 Leather for garment and gloves;
- 907 Sole leather.

Assuring that the methodology used to assess the environmental impact is compliant with the PEF Guide and the PEFCR guidance and therefore the results are comparable across products with the same functionality and using this specific PEFCR. Notably, results cannot meaningfully be used for comparison to those for synthetic substitutes to leather or other products used for the same application. This PEFCR shall not be used for a direct comparison with other substituting materials.

913 An extensive methodological comparison has been carried out against the existing Product Category Rules 914 (PCR) for leather, which have been taken into consideration as a basis to set the rules of this PEFCR:

- PCR 2011:13 Finished bovine leather (Version 2.0 Draft for open consultation) (Aequilibria for Giada
   Agency, 2014);
- PCR 2011:13 Finished bovine leather (Version 1.0) (Aequilibria for Giada Agency, 2011) (expired 2014-09-28; being updated);
- Leather Environmental footprint Product Category Rules (PCR) Part 1- Carbon footprints (CEN/TC
   289-WG4-Leather-Technical specifications on the use of leather and terminology).

## 921 ANNEX 5 – Representative Products


Leathers vary significantly in terms of animal origin, process type, particularly the tanning method used (Crtanning, Free-of-Chrome tanning, Vegetable tanning), destination (shoe upper, furniture upholstery,
automotive interiors, leather goods, garment, lining, desk covers, parchments, orthopaedic and medical uses,
book binding etc.), organoleptics (softness, handle, colour, grain pattern etc.). The end user usually sets
specifications.

- 927 Statistical weighing factors necessary for the definition of the four virtual RPs were calculated using market928 data.
- Annual data available for the Italian Tanning Industry (*Source: UNIC Servizi, 2013*) were used as Italy accounts
  for 66% of the total European finished leather production output value and 17% of the global output value,
  respectively, and, therefore, constitute a valid proxy for the European market.

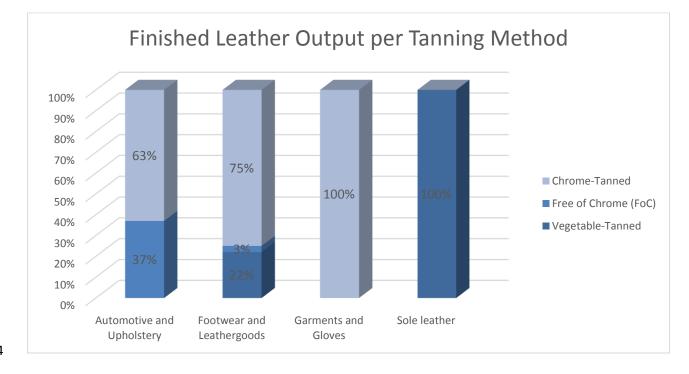
#### 932 Use and Application Mix

- The average Italian market share (percentage) of finished leathers per end use and destination is illustrated
   in Figure 4 (excluding leathers for sole which are measured in kg); the relevant application specific quota
- 935 constituted the starting point for the calculation of estimates with the inclusion of sole leather.





938 Technological Mix


The most notable technological differentiation of finished leathers is the Tanning Technology employed. In
 broad terms, the tanning systems utilised can be itemised depending on the chemical nature of the tanning
 substances used in two main types:

 942
 943
 943 Mineral Tannage, obtained through the use of mineral tanning agents, like Cr(III)-, Al-, Ti- or/and Zrsalts, as well as their appropriate mixes;

- 944 2. Organic tannage further defined into natural and synthetic organic tannages, using vegetable 945 tannins, synthetic tanning agents (syntans) or natural and synthetic oils for this purpose. Vegetable 946 Tannage, in particular, is the tanning method used for the production of all finished sole leather, as 947 well as a significant share of luxury leather goods finished leathers. Again, there are two (2) variants of vegetable tanning, the slow pit tannage (traditional) and the rapid drum tannage. Moreover, there 948 is a product diversity, namely flexible vegetable tanned leathers and sole leathers, light vegetable 949 tanned leathers for leather goods and book binding leathers, reflecting compositional variation of 950 the finished product obtained through different manufacturing operations and chemistry applied. 951 952 The critical parameter for these leathers is the degree of tannage.
- More recently, finished leathers processed without the use of Cr-tanning or retanning agents constitute a product class known as FoC leathers.
- Initial global market estimates for the relative output volume of Cr(III)-tanned finished leather range from
  70% to 80% of the global finished leather production volume, with some gains during the last decade for the
  FoC or vegetable tanned leathers, particularly for automotive and furniture end use.

At this early stage, and for the purposes of the virtual product definition, it is proposed to use the average relative quota (%) of production volume output per finished leather destination further partitioned by tanning technology applied, namely Cr(III)-tanning, Vegetable tanning and FoC tanning, respectively.

- 961 A graphic illustration of a typical semi-quantitative partition of global finished leather market for the most-962 prominent types of tannages is given in Figure 5.
- 963 Figure 5 Finished Leather volume output partition on the basis of tanning method applied



# 964

965

### Animal Mix - Origin of Input Processing Items and Finished Leather

966 The total input processing materials (bovine, ovine and caprine rawstock) considered for the definition of the967 RP composition (Animal mix) is shown in Figure 6.





66%

12%

Footwear and

Leathergoods



## 970 **RPs Specification**

70%

60%

50%

40%

30%

20% 10% 0% 100%

Automotive and

Upholstery

971 To define a representative virtual product the applications of finished leathers, tanning technology and
972 animal mix have been considered, as proposed above, with respect to their relevance for defining the PEFCR
973 rules.

Garments and

Gloves

974 The required characteristics of the RP can be summarised as shown in Table 5.

To make the selected RPs representative of the actual leather consumed in Europe, EU leather consumption mix has been calculated based on Eurostat for trade and the data for production from EU national associations of tanners (notably UNIC Economic Department) as:

- 978 Total EU tanners' sales of finished leather in the EU market 2014: 5,909 million €ur (as difference
   979 between EU tanners' total turnover (8,267 million €ur) and EU tanners' export to extra-EU (2,358
   980 million €ur]);
- 981 Total Extra-EU import of finished leather in 2014: 1,244 million €ur;
- Total apparent consumption of finished leather in the EU market: 7,153 million €ur.

The consumption mix details per main Country, based on EU members tanning turnovers, extra-EU export of finished leather of EU members and extra-EU import of finished leather per extra-EU Countries is reported in Table 32. The same consumption mix is used for all the RPs due to the lack of data for the identification of a specific consumption mix for each RP.

987 Table 32 EU Leather consumption mix (Countries contribution for less than 55 million €ur have been excluded)

| Producing/Exporting Country | Finished leather sales in EU28 market (million €ur) | Percentage |
|-----------------------------|-----------------------------------------------------|------------|
| Italy                       | 3 661                                               | 57,7%      |
| Spain                       | 608                                                 | 9,6%       |
| Germany                     | 377                                                 | 5,9%       |
| France                      | 311                                                 | 4,9%       |

Bovine

Caprine

Ovine

Calf

100%

Sole leather

| Producing/Exporting Country | Finished leather sales in EU28 market (million €ur) | Percentage |
|-----------------------------|-----------------------------------------------------|------------|
| Austria                     | 305                                                 | 4,8%       |
| Portugal                    | 302                                                 | 4,8%       |
| Brazil                      | 247                                                 | 3,9%       |
| India                       | 223                                                 | 3,5%       |
| United Kingdom              | 214                                                 | 3,4%       |
| Pakistan                    | 101                                                 | 1,6%       |
| Total                       | 6 349                                               | 100,0%     |

Since it is not possible to know the end use of a specific leather at the moment of its trade, the mean market values have been used as a baseline to model all of the RPs. 988

989

## 990 ANNEX 6 – Downstream scenarios

Downstream processes are not included into the system boundaries of the intermediate product "finished
 leather". However, the carbon stored in finished leather shall be calculated as a relevant information for the
 modelling of downstream scenarios.

- 994 Carbon stored in finished leather derives from two different sources:
- The carbon stored in raw hides and skins (the calculation of the amount of Biogenic Stored Carbon (BSC) is mandatory);
- The biogenic carbon stored in chemicals products that remain fixed on finished leather.
- 998 If primary data are not available, the methodology described below shall be used.

### 999 Calculations of Stored Carbon Content in Finished Leather Products

1000 Inventories for each RP have been compiled using primary specific data for this purpose. These, in turn,
 1001 comprise the average quantities of chemical ancillary products employed during finished leather
 1002 manufacture.

- 1003 On the other hand, the calculation of the quantities of added chemicals administered, as well as of the 1004 products of their reaction with the processing input materials would require:
- Analytical compositional data it is unrealistic to try and implement a systematic analytical effort for the various finished leathers and manufacturing plants. Moreover, such data already available, relate to the content of monitored, regulated or restricted substances in the finished leathers, as routinely applied for the Tanneries and end users. Finally, in several cases analytical methods do not exist or the exact chemical nature of the compounds found in leather cannot be identified with any precision;
- Measurement or calculation of the main organic component of the finished leather, namely collagen and of other proteins and biopolymers. Hide substance, also used for the allocation of environmental impacts to the various co-products in this survey, is measured from N-TKN (Kjedahl Total Nitrogen Content, IUC 10), whereas N-NH4+ can be determined separately.
- 1014 Concomitantly, and in view, of the lack of a BOM for the finished leather or detailed and complete 1015 compositional data the stored carbon content in the various RPs was calculated as follows:

### 1016 Biogenic Stored Carbon (BSC)<sup>33</sup>

1017 This is equal, in general terms, to the collagen (corium) quantities recovered from input processing materials 1018 and ennobled during leather manufacture. The average hide substance content for the procurement mix 1019 (animal origins) is known from generic data available in the world wide sectoral literature and the 1020 corresponding values are reported with Table 33.

<sup>&</sup>lt;sup>33</sup> The complete calculation sheet and results for BSC for each RP and animal origin are reported in Table 34.

#### 1021 Table 33 Hide substance content per kg of raw hide / skin

| Raw material                                   | aw material Wet Salted Bovine<br>Hides [>20 kg] |     | Wet salted Bovine<br>(Calf-Veals) [< 20<br>kg] |     | Air Dried Sheep<br>Skins [0,65<br>kg/piece] |     | Wet Salted Sheep<br>Skins [1,5 kg/piece] |     | Pickled Sheep<br>Skins [1 kg/piece] |     | Caprine Air-Dried<br>Skins [0,45 kg/piece] |     |
|------------------------------------------------|-------------------------------------------------|-----|------------------------------------------------|-----|---------------------------------------------|-----|------------------------------------------|-----|-------------------------------------|-----|--------------------------------------------|-----|
| Ingredients                                    | Quantity [g]                                    | g-N | Quantity [g]                                   | g-N | Quantity [g]                                | g-N | Quantity [g]                             | g-N | Quantity [g]                        | g-N | Quantity [g]                               | g-N |
| Humidity                                       | 450                                             | -   | 450                                            | -   | 200                                         | -   | 450                                      | -   | 550                                 | -   | 200                                        | -   |
| Collagen                                       | 280                                             | 50  | 300                                            | 53  | 400                                         | 71  | 180                                      | 32  | 230                                 | 41  | 650                                        | 116 |
| Hair - Wool and<br>other Proteins              | 60                                              | 10  | 50                                             | 8   | 300                                         | 48  | 130                                      | 21  | -                                   | -   | 120                                        | 19  |
| Natural Grease                                 | 60                                              | -   | 50                                             | -   | 100                                         | -   | 45                                       | -   | 150                                 | -   | 25                                         | -   |
| Inorganic<br>Substances &<br>Preservation Salt | 150                                             | -   | 150                                            | -   | -                                           | -   | 195                                      | -   | 70                                  | -   | -                                          | -   |
| Sub Totals                                     | 1 000                                           | 60  | 1 000                                          | 61  | 1 000                                       | 119 | 1 000                                    | 53  | 1 000                               | 41  | 1 000                                      | 135 |

1022

- 1023 On the other hand, the average reference flow per DU (kg of raw hide or skin / m<sup>2</sup>) has been determined for 1024 the various procurement mixes and finished products, as cited in Table 7.
- 1025 It is therefore possible to calculate the total quantity of hide substance processed and partially recovered in 1026 the finished leather, as follows:
- 1027 <u>Equation 1</u>: Biogenic protein content valorised [g / kg raw hides or skins] = Biogenic protein content [g / kg
   1028 raw hides or skins] x Quota of bio-based protein content valorised [%]
- 1029 <u>Equation 2</u>: Biogenic protein content (hide substance) [g / m<sup>2</sup> of finished leather] = Reference flow (Table 7)
   1030 [kg raw hides or skins / m<sup>2</sup> of finished leather] x Biogenic protein content valorised [g / kg raw
   1031 hides or skins]
- 1032 In order to calculate the equivalent amount of Carbon Stored per DU, it was necessary to assume that:
- Bulk protein content is collagen of Type I, namely a biopolymer with an average molecular weight of
   300 kDa (as determined by Sodium Dodecyl Sulphate PolyAcrylamide Gel Electrophoresis (SDS PAGE) analysis and literature published data);
- The monomer building block of hide substance is tropocollagen and the % content of hide substance
   in carbon is equal to the % carbon content of tropocollagen, respectively.
- 1038 Along these lines, the Biogenic content in each RP was determined by employing the following formula:
- 1039Equation 3: Biogenic stored carbon content g-c  $[g / m^2 of finished leather] = Biogenic protein content (hide1040substance) <math>[g / m^2 of finished leather] * 51.8\%$
- 1041 Table 34 provides a more detailed description of the calculation method. Values provided in the table can
- 1042 be used as default by the user of the PEFCR.

#### **1043** Table 34 Calculation sheet for BSC<sup>34</sup>

|    |                  |                         |                                               | 1 kg                                  | of wet salte                | ed hides or ski                            | ns (Table 33)                              |                                                                 |                                              | 1 m                                                          | <sup>2</sup> of finished l                                   | eather                                          |
|----|------------------|-------------------------|-----------------------------------------------|---------------------------------------|-----------------------------|--------------------------------------------|--------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|
| RP | Animal<br>origin | Collagen<br>content [g] | Hair &<br>other<br>proteins<br>content<br>[g] | Biogenic<br>protein<br>content<br>[g] | g-c from<br>collagen<br>[g] | g-c hair [g]<br>or<br>g-c wool<br>[g]      | Total<br>protein c<br>[g]                  | Quota of<br>bio-based<br>protein<br>content<br>valorised<br>[%] | Biogenic<br>protein content<br>valorised [g] | Reference<br>flow [kg<br>raw hides<br>or skins]<br>(Table 7) | Biogenic<br>protein<br>content<br>(hide<br>substance)<br>[g] | Biogenic<br>stored carbon<br>content g-c<br>[g] |
| ID |                  | C                       | НР                                            | BP =<br>C+HP                          | GCC =<br>C*51,8%            | GCH =<br>HP*45,2%<br>or<br>GCW =<br>HP*50% | TPC =<br>GCC+GCH<br>or<br>TPC =<br>GCC+GCW | BPV                                                             | BPVR = BP*BPV                                | RF                                                           | BPHS =<br>BPVR*RF                                            | BSC =<br>BPHS*51,8%                             |
| 1  | Bovine           | 280                     | 60                                            | 340                                   | 145                         | 27,12                                      | 172                                        | 31,8                                                            | 108                                          | 7,06                                                         | 762                                                          | 395                                             |
| 2  | Bovine           | 280                     | 60                                            | 340                                   | 145                         | 27,12                                      | 172                                        | 36,5                                                            | 124                                          | 7,41                                                         | 920                                                          | 476                                             |
| 2  | Calf             | 300                     | 50                                            | 350                                   | 155                         | 22,60                                      | 178                                        | 30,7                                                            | 107                                          | 5,74                                                         | 617                                                          | 319                                             |
| 2  | Caprine          | 293                     | 54                                            | 347                                   | 152                         | 24,00                                      | 176                                        | 56,1                                                            | 195                                          | 2,42                                                         | 471                                                          | 244                                             |
| 2  | Ovine            | 180                     | 130                                           | 310                                   | 93                          | 65,00                                      | 158                                        | 46,9                                                            | 145                                          | 3,06                                                         | 445                                                          | 230                                             |
| 3  | Calf             | 300                     | 50                                            | 350                                   | 155                         | 22,60                                      | 178                                        | 30,7                                                            | 107                                          | 5,74                                                         | 617                                                          | 319                                             |
| 3  | Caprine          | 293                     | 54                                            | 347                                   | 152                         | 24,00                                      | 176                                        | 56,1                                                            | 195                                          | 2,42                                                         | 471                                                          | 244                                             |
| 3  | Ovine            | 180                     | 130                                           | 310                                   | 93                          | 65,00                                      | 158                                        | 46,9                                                            | 145                                          | 3,79                                                         | 551                                                          | 285                                             |
| 4  | Bovine           | 280                     | 60                                            | 340                                   | 145                         | 27,12                                      | 172                                        | 52,8                                                            | 180                                          | 7,71                                                         | 1 384                                                        | 717                                             |

1044

<sup>34</sup> Additional information:

- g-C Hair = 45,2% (<u>http://www.texascollaborative.org/hildasustaita/module%20files/topic3.htm</u>);
- g-C Wool = 50,0% (<u>http://www.iwto.org/campaigns/world-wool-award/</u>);
- g- C-Collagen calculated from monomer Tropocollagen Molecular Formula;
- For RP1: Salted Hides Weight = Fresh Hides Weight 9%.

### 1045 Stored Carbon from Chemicals (SCC)

1046 The remaining quantities of fixed and stored carbon in finished RPs stems from the quantities of derivatives 1047 and products of the chemical reaction or/and physical deposition of chemical ancillaries utilised for the 1048 manufacture of finished leather.

- 1049 These, in turn, can vary significantly, as a result of:
- Customised recipes (reagents, stoichiometry and physical conditions of reactions) for processing steps applicable;
- The plethora of ancillary products utilised routinely by each manufacturing plant, often of unknown
   exact composition;
- Analytical contents and identity of chemical nature of substances and compositions used, is seldom
   known or reliable;
- The quantity of input ancillaries taken up and irreversibly fixed on the collagenic matrix and leather
   is only broadly known and generic data for this purpose quite often vary depending on the source,
   whilst when reliable are commercial auxiliary product specific. Generally applicable exhaustion quota
   are reported in Tannery BREF 2013, often challenged by the producers of the chemical auxiliaries
   themselves;
- The chemical nature of the products of the reactions of ancillaries with leather are poorly known.
- 1062 Concomitantly, it will be necessary to use for the purposes of the in-hand calculations:
- The average quantities obtained from primary data for each RP (Inventories);
- A representative chemical reactive substance was selected and identified for each chemical ancillary
   product family;
- The dry solids and active substance contents employed were sourced from the Technical Data Sheets
   for bulk commercial auxiliary products.

The assumption made at this point was that the biogenic SCC content, namely carbon stored in each RP, was
equal to the amount of Biogenic carbon contained in the amount of representative substances administered
during processing and eventually fixed on the product finished leathers.

- 1071 The complete set of the assumptions in conjunction to clarifications for the formulas used for the calculation 1072 of SCC per chemical ancillary product family is presented with Table 35.
- **1073** Table 35 Assumptions for the calculation of the chemical stored carbon

| Chemicals           | Active<br>Substance<br>[Average %] | Fixed on<br>leather<br>[%] | Representative<br>Compound -<br>Substance -<br>Monomer | Average<br>Carbon<br>Content<br>[%] | Notes                                                                                                                                                                              |
|---------------------|------------------------------------|----------------------------|--------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Protein             | 21%                                | 100%                       | Sodium caseinate                                       | 52,12%                              | Assumption: Exact synthesis<br>for food additive published -<br>In order to simplify calculation<br>Poly-proline (Mw:1000-10.000<br>Da) is used as the<br>representative substance |
| Natural<br>pigments | 100%                               | 80%                        | Carbon Black                                           | 100,00%                             | Assumption Active Substance<br>Content of Pigments=100% -<br>No reliable market data<br>available                                                                                  |

| Chemicals                     | Active<br>Substance<br>[Average %] | Fixed on<br>leather<br>[%] | Representative<br>Compound -<br>Substance -<br>Monomer | Average<br>Carbon<br>Content<br>[%] | Notes                                                                                                                                                             |
|-------------------------------|------------------------------------|----------------------------|--------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Natural<br>filler             | 100%                               | 75%                        | Starch                                                 | 44,44%                              | Active substance content and<br>exhaustion % from chemical<br>companies' literature data<br>and Technical Data Sheets                                             |
| Natural<br>tannins,<br>System | 62%                                | 80%                        | Pyrogallol                                             | 57,10%                              | Assumption: Powder form of<br>Vegetable tannin extract<br>quantities - Contents from<br>Commercial product Mimosa<br>FS - Dry substance:92% - Tans<br>content:67% |
| Natural<br>fatliquors         | 90%                                | 85%                        | Oleic acid                                             | 76,47%                              | See assumptions as above -<br>Active substance content and<br>exhaustion % from chemical<br>companies' literature data                                            |
| Enzymatic<br>Product          |                                    | 0%                         |                                                        | 0,00%                               | Reacting and excess washed away                                                                                                                                   |

- 1074 Briefly, the general calculation rules of SCC and equation employed is as follows:
- 1075Equation 4: SCC, g per F.U  $[g / m^2] = \sum$  (Inventory Quantity of Chemical Offer  $[g / m^2] \times$  Active chemical1076substance content  $[\%] \times$  Fixed quota of chemical substance  $[\%] \times$  Carbon Content in1077Representative Chemical Reactive Substance [%])
- 1078 Biogenic Stored Carbon (BSC)
- 1079 The total amount of stored carbon in each RP was the sum of of BSC and SCC respectively, determined as 1080 above for each RP:
- 1081Equation 5: TSS [g of total stored Carbon /  $m^2$ ] = BSC [g /  $m^2$ ] + SCC [g of synthetic stored carbon1082 $/m^2$ ]

## 1083 ANNEX 7 – Default values

1084 The table below reports the default composition of chemical substances to be used in case primary data on 1085 the active substance content are not available.

#### 1086 Table 36 Chemicals modelling

| Category        | Family                                   | Representative substance  | Process (see Table 14 for related dataset) | Composition | Modelling<br>accuracy |
|-----------------|------------------------------------------|---------------------------|--------------------------------------------|-------------|-----------------------|
|                 |                                          | Adipic                    | Adipic acid                                | 100,0%      | 1                     |
|                 | n da ante Pa                             | Citaire                   | Citric acid                                | 50,0%       | 4                     |
|                 | Hydroxy-carboxylic                       | Citric                    | Water, tap                                 | 50,0%       | 1                     |
|                 | acids (Deliming agents)                  | Lastic                    | Lactic acid                                | 80,0%       | 1                     |
|                 |                                          | Lactic                    | Water, tap                                 | 20,0%       | 1                     |
|                 |                                          | Hydrochloric acid         | Hydrochloric acid                          | 30,0%       | 1                     |
|                 |                                          | nyurochione aciu          | Water, tap                                 | 70,0%       | T                     |
|                 | Stuang mineral acida                     | Phoenhonic acid           | Phosphoric acid                            | 17,0%       | 3                     |
| Acids           | Strong mineral acids                     | Phosphonic acid           | Water, tap                                 | 83,0%       | 3                     |
| ALIUS           |                                          | Phosphoric acid           | Phosphoric acid                            | 100,0%      | 1                     |
|                 |                                          | Sulfuric acid             | Sulphuric acid                             | 100,0%      | 1                     |
|                 | Strong organic acids                     | Acatic acid               | Acetic acid                                | 98,0%       | 1                     |
|                 | (fixing agent)                           | Acetic acid               | Water, tap                                 | 2,0%        | 1                     |
|                 | Strong organic acids<br>(clearing agent) | Oxalic acid dehydrate     | Adipic acid                                | 100,0%      | 4                     |
|                 | Strong organic acids                     |                           | Formic acid                                | 85,0%       |                       |
|                 | (pickling and fixing agent)              | Formic acid               | Water, tap                                 | 15,0%       | 1                     |
|                 |                                          | Modified polysaccharides  | Maize starch                               | 100,0%      | 2                     |
|                 |                                          | Polyacrylamide            | Polyacrylamide                             | 50,0%       | 1                     |
| Antifoam / slip | Silicone and siloxans                    | Polyaci ylannide          | Water, tap                                 | 50,0%       | T                     |
| agents          | Silicone and siloxans                    | Silicone products         | Antifoaming agent, silicone emulsion       | 100,0%      | 3                     |
|                 |                                          | Sodium Metasilicate       | Sodium silicate                            | 37,0%       | 2                     |
|                 |                                          | Sourum Metasincate        | Water, tap                                 | 63,0%       | 2                     |
|                 |                                          | Ammonia                   | Ammonia                                    | 23,0%       | 1                     |
|                 |                                          | Ammonia                   | Water, tap                                 | 77,0%       | 1                     |
| Basas           |                                          | Calcium formate           | Sodium formate                             | 100,0%      | 2                     |
| Bases           |                                          | Lime (calcium hydroxide)  | Lime                                       | 100,0%      | 1                     |
|                 |                                          | Magnesium oxide           | Magnesium oxide                            | 100,0%      | 1                     |
|                 |                                          | Sodium acetate trihydrate | Sodium formate                             | 100,0%      | 3                     |

| Category           | Family                              | Representative substance                                                                                 | Process (see Table 14 for related dataset) | Composition | Modelling<br>accuracy |
|--------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------|-----------------------|
|                    |                                     | Sodium bicarbonate                                                                                       | Sodium bicarbonate                         | 100,0%      | 1                     |
|                    |                                     | Sodium carbonate                                                                                         | Sodium bicarbonate                         | 98,0%       | 1                     |
|                    |                                     | Sodium carbonate                                                                                         | Water, tap                                 | 2,0%        | 1                     |
|                    |                                     | Sodium formate                                                                                           | Sodium formate                             | 100,0%      | 1                     |
|                    |                                     | Sodium hydroxide                                                                                         | Sodium hydroxide                           | 50,0%       | 1                     |
|                    |                                     | Socium nycroxice                                                                                         | Water, tap                                 | 50,0%       | T                     |
|                    | ABS                                 |                                                                                                          | Alkylbenzene sulfonate                     | 100,0%      | 1                     |
|                    | Alkyl-polyglycol Ethers             |                                                                                                          | Dipropylene glycol monomethyl ether        | 85,0%       | 3                     |
|                    | (APEOs)                             |                                                                                                          | Water, tap                                 | 15,0%       | 3                     |
|                    | Ethoxylated fatty                   |                                                                                                          | Ethoxylated alcohol (AE7)                  | 39,0%       | -                     |
| Degreasing         | amines                              |                                                                                                          | Water, tap                                 | 61,0%       | 3                     |
| agents             | Ethoxylated fatty<br>alcohol (nonyl |                                                                                                          | Ethoxylated alcohol (AE7)                  | 70,0%       | 2                     |
|                    | ethoxylated phenol)                 |                                                                                                          | Water, tap                                 | 30,0%       |                       |
|                    | Fatty alcohol sulphate              |                                                                                                          | Ethoxylated alcohol (AE7)                  | 80,0%       | 4                     |
|                    |                                     |                                                                                                          | Water, tap                                 | 20,0%       |                       |
|                    | Acid azodyes                        | Acid Black 210 - C34H25K2N11O11S3                                                                        | Aniline                                    | 100,0%      | 5                     |
|                    | Basic azodyes                       | Basic Green 1 (100%)                                                                                     | Aniline                                    | 100,0%      | 5                     |
|                    | Direct dyes                         | C.I. Direct Black 100%                                                                                   | Aniline                                    | 100,0%      | 5                     |
|                    |                                     | Chromium, 3-hydroxy-4-[(2-hydroxy-1-<br>naphthalenyl)azo]-7-nitro-1-<br>naphthalenesulfonic acid complex | Aniline                                    | 10,0%       | 5                     |
| Dyestuff           |                                     | Sodium 2-anilino-5-(2,4-<br>dinitroanilino)benzenesulphonate                                             | Alkylbenzene sulfonate                     | 15,0%       |                       |
| (aqueous<br>based) | Metal complex dyes                  | Sodium 6-amino-5-[[4-chloro-2-<br>(trifluoromethyl)phenyl]azo]-4-<br>hydroxynaphthalene-2-sulphonate     | Alkylbenzene sulfonate                     | 5,0%        |                       |
|                    |                                     | Sodium sulfate                                                                                           | Sodium sulphate                            | 35,0%       |                       |
|                    |                                     | Starch                                                                                                   | Maize starch                               | 35,0%       |                       |
|                    | Depative dues                       | Covered by trade corret                                                                                  | Aniline                                    | 75,0%       | 5                     |
|                    | Reactive dyes                       | Covered by trade secret                                                                                  | Water, tap                                 | 25,0%       |                       |
|                    | Sulfur dyes                         | Solubilised Sulphur Black 1                                                                              | Aniline                                    | 100,0%      | 5                     |

| Category       | Family                                                     | Representative substance                                                                                                                                           | Process (see Table 14 for related     | Composition | Modelling |
|----------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|-----------|
|                |                                                            |                                                                                                                                                                    | dataset)                              |             | accuracy  |
|                | Azodyes or Azo, metal<br>complex dyes or<br>Anthraquinones | Solvent orange 11 2,5%, Solvents: ethanol<br>48%, isopropanol 3%, oleic acid 7,5%,<br>xylene 7,5%, ethylacetate 7,5%, 2-<br>phenoxyethanol 3%, 2-(2-ethoxy)ethanol | Aniline                               | 2,5%        |           |
|                |                                                            |                                                                                                                                                                    | Ethanol                               | 48,0%       |           |
| Dyestuff       |                                                            |                                                                                                                                                                    | Ethoxylated alcohol (AE7)             | 21,0%       | 5         |
| (Solvent Based |                                                            |                                                                                                                                                                    | Ethyl acetate                         | 7,5%        |           |
| for finishing) |                                                            |                                                                                                                                                                    | Fatty acids                           | 7,5%        |           |
| for finishing/ | Antinaquinones                                             | 21%                                                                                                                                                                | Isopropanol                           | 3,0%        |           |
|                |                                                            | 21/0                                                                                                                                                               | Phenoxy-compounds                     | 3,0%        |           |
|                |                                                            |                                                                                                                                                                    | Xylene                                | 7,5%        |           |
|                |                                                            | Coconut, soya, reepseed, castor oil, etc.                                                                                                                          | Sulphonated rapeseed oil              | 100,0%      | 1         |
|                |                                                            | Fish oil (raw, sulphited, sulphated, sulphonated)                                                                                                                  | Sulphonated fish oil                  | 100,0%      | 1         |
|                |                                                            | Lanoline                                                                                                                                                           | Fatty acids                           | 50,0%       | _         |
|                | Natural fatliquors                                         |                                                                                                                                                                    | Water, tap                            | 50,0%       | 5         |
|                |                                                            | Lard oil                                                                                                                                                           | Oxi-sulphited lard oil                | 100,0%      | 1         |
|                |                                                            | Lecithin                                                                                                                                                           | Fatty acids                           | 90,0%       | 5         |
|                |                                                            |                                                                                                                                                                    | Water, tap                            | 10,0%       |           |
| Fatliquors and |                                                            | Sulphated neatsfootoil (raw or sulphited or sulphated)                                                                                                             | Fatty acids                           | 60,0%       | 5         |
| oils           |                                                            |                                                                                                                                                                    | Water, tap                            | 40,0%       |           |
|                |                                                            | Butanedioic acid, sulfo-, C-C10-18-alkyl esters, disodium salts, ethoxylated                                                                                       | Synthetic fatliquors                  | 100,0%      | 1         |
|                |                                                            | Dhaankan Estana                                                                                                                                                    | Organophosphorus-compounds            | 94,0%       | 4         |
|                | Synthetic fatliquors                                       | Phosphor Esters                                                                                                                                                    | Water, tap                            | 6,0%        |           |
|                |                                                            | Sulphited / Sulphated fatty acid esters                                                                                                                            | Sulphated acid esters                 | 100,0%      | 1         |
|                |                                                            | Sulphochlorinated paraffins                                                                                                                                        | Synthetic fatliquors                  | 67,0%       | _ 5       |
|                |                                                            |                                                                                                                                                                    | Water, tap                            | 33,0%       |           |
|                | Inorganic fillers                                          |                                                                                                                                                                    | Kaolin                                | 100,0%      | 3         |
|                | Organic fillers                                            | Co-polymers                                                                                                                                                        | Acrylonitrile Butadiene Styrene (ABS) | 100,0%      | 3         |
| Fillers        |                                                            | Proteins                                                                                                                                                           | Maize starch                          | 100,0%      | 5         |
|                |                                                            | Resins (Dicyandiamide resin)                                                                                                                                       | Anionic resin                         | 100,0%      | 4         |
|                |                                                            | Starch                                                                                                                                                             | Maize starch                          | 100,0%      | 1         |
| <b>6</b>       |                                                            | Carbon dioxide                                                                                                                                                     | Carbon dioxide                        | 100,0%      | 1         |
| Gases          |                                                            | Nitrogen                                                                                                                                                           | Nitrogen                              | 100,0%      | 3         |

| Category                    | Family                                    | Representative substance                                                                          | Process (see Table 14 for related dataset) | Composition | Modelling<br>accuracy |
|-----------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------|-------------|-----------------------|
|                             |                                           | Oxygen                                                                                            | Oxygen                                     | 100,0%      | 3                     |
|                             | Acrylic polymers                          |                                                                                                   | Acrylic binder                             | 34,0%       | 3                     |
|                             | Acrylic polymers                          |                                                                                                   | Water, tap                                 | 66,0%       | 5                     |
| Lacquers                    | Nitrocellulose                            | Nitrocellulose                                                                                    | Nitrocellulose                             | 100,0%      | 1                     |
|                             | Polyurethane                              |                                                                                                   | Polyurethane dispersion                    | 55,0%       | 1                     |
|                             | dispersions                               |                                                                                                   | Water, tap                                 | 45,0%       | T                     |
|                             | Inorganic                                 | Silicas                                                                                           | Activated silica                           | 40,0%       | 4                     |
| Matting agents              |                                           | Shicas                                                                                            | Water, tap                                 | 60,0%       | 4                     |
| watting agents              | Organic                                   | Thermoplastic Polymers                                                                            | Polyurethane dispersion                    | 62,5%       | 4                     |
|                             | Organic                                   | mernoplastic Folymers                                                                             | Water, tap                                 | 37,5%       | 4                     |
|                             |                                           | Aluminium chloride (17% Al2O3)                                                                    | Aluminium chloride                         | 83,6%       | 1                     |
|                             |                                           | Aluminium chionde (1778 Al203)                                                                    | Water, tap                                 | 16,4%       | ±                     |
|                             | Aluminium tanning                         | Aluminium potassium sulphate                                                                      | Aluminium sulphate                         | 50,0%       | 3                     |
|                             | agents                                    | (KAI(SO4)2.12 H2O)                                                                                | Potassium sulphate                         | 50,0%       | 5                     |
|                             |                                           | Aluminium sulfate                                                                                 | Aluminium sulphate                         | 100,0%      | 1                     |
| Mineral                     |                                           | Ammonium aluminium sulfate                                                                        | Aluminium sulphate                         | 50,0%       | 3                     |
| tanning agents              |                                           |                                                                                                   | Ammonium sulfate                           | 50,0%       | 5                     |
|                             | Chromium sulphate<br>(chromium oxide 14%) | 33%/50% basic chromium sulphate formate masked (33%)                                              | Basic chrome sulfate                       | 100,0%      | 3                     |
|                             | Chromium sulphate<br>(chromium oxide 26%) | 33%/50% basic chromium sulphate formate masked (33%)                                              | Basic chrome sulfate                       | 100,0%      | 2                     |
|                             | Zirconium tanning                         | The second second second second second                                                            | Aluminium chloride                         | 30,0%       | -                     |
|                             | salts                                     | Zirconium sulphate tetrahydrate                                                                   | Sodium sulphate                            | 70,0%       | 5                     |
|                             |                                           |                                                                                                   | Aluminium oxide                            | 76,3%       | 4                     |
| Organometallic              | Aluminium syntans                         | Aluminium triformate                                                                              | Water, tap                                 | 23,7%       |                       |
| synthetic<br>tanning agents | Chromium syntans                          | Chromium-containing condensation<br>product of phenolic sulphonic acids<br>(12,5% chromium oxide) | Basic chrome sulfate                       | 12,5%       |                       |
|                             |                                           |                                                                                                   | Sodium sulphate                            | 80,5%       |                       |
|                             |                                           |                                                                                                   | Water, tap                                 | 7,0%        |                       |
| Penetration,                | Aryl sulphonic acid                       | Napthalenosulphonic acid /                                                                        | Alkylbenzene sulfonate                     | 30,0%       | 5                     |
| Levelling, Build            | derivatives                               | Formaldehyde condensation products                                                                | Water, tap                                 | 70,0%       |                       |
| up and Fixing               | Fatty Alcohols                            | Polyoxyethylene derivatives of fatty alcohols                                                     | Fatty alcohols                             | 53,5%       | - 4                   |
|                             |                                           |                                                                                                   | Water, tap                                 | 46,5%       |                       |

| Category     | Family                                   | Representative substance                                                                        | Process (see Table 14 for related dataset) | Composition    | Modelling<br>accuracy |
|--------------|------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|-----------------------|
| Dyeing       | Fatty amine<br>derivatives               | Ethoxylated fatty amine sulphate /<br>Polyoxyethylene fatty amine derivatives                   | Fatty alcohols                             | 56,0%          | 5                     |
| Auxilliaries |                                          |                                                                                                 | Water, tap                                 | 44,0%          | J                     |
|              | Glycols                                  | Polyethyleneglycol (PEG)                                                                        | Triethylene glycol                         | 100,0%         | 4                     |
|              | Quaternary                               | (2-methoxymethylethoxy)propanol 10%                                                             | Ethoxylated alcohol (AE7)                  | 10,0%          |                       |
|              | Ammonium                                 | Ammonium mercaptoacetate                                                                        | Water, tap<br>Ammonium sulfate             | 20,0%<br>10,0% | 4                     |
|              | derivatives                              | Ethanolamine                                                                                    | Monoethanolamine                           | 60,0%          |                       |
|              | Inorganic pigments (ion oxide)           | Magnetite                                                                                       | Magnetite                                  | 100,0%         | 1                     |
|              |                                          | Aluminium hydroxide                                                                             | Aluminium oxide                            | 7,0%           |                       |
|              | Inorganic pigments<br>(titanium dioxide) | Silica dioxide                                                                                  | Activated silica                           | 7,0%           | 4                     |
|              | (titanium dioxide)                       | Titanium dioxide                                                                                | Titanium dioxide                           | 86,0%          |                       |
| Pigments     | Organic and metal-<br>complex pigments   | [2,3'-Bis[[(2-<br>hydroxyphenyl)methylene]amino]but-2-<br>enedinitrilato(2-)-N2,N3,O2,O3]nickel | Carbon black                               | 100,0%         | 4                     |
|              |                                          | Carbon Black N330                                                                               | Carbon black                               | 100,0%         | 1                     |
|              |                                          | Nanodispersions                                                                                 | Carbon black                               | 100,0%         | 5                     |
|              |                                          | Phthalocyanines (ca. 25% of all pigments derivatives of Copper Phthalocyanine -                 | Phthalocyanine blue                        | 50,0%          | 1                     |
|              |                                          | CuPc); Sodium or ammonium salts of CuPc-sulphonic acid                                          | Phthalocyanine green                       | 50,0%          | -                     |
|              | Bating and other<br>enzymes              | Proteases, lipases, elastases, cellulases                                                       | Enzymes                                    | 100,0%         | 1                     |
| Proteins     |                                          | Albumin                                                                                         | Acrylic binder                             | 10,0%          |                       |
| Proteins     | Binders                                  | Albumin                                                                                         | Water, tap                                 | 90,0%          |                       |
|              |                                          | Casein                                                                                          | Acrylic binder                             | 21,0%          | 5                     |
|              |                                          |                                                                                                 | Water, tap                                 | 79,0%          | 3                     |
|              |                                          | Butadiene resins                                                                                | Acrylonitrile Butadiene Styrene (ABS)      | 32,0%          | 5 4                   |
|              |                                          |                                                                                                 | Water, tap                                 | 68,0%          |                       |
| Resins       | Various                                  | Formaldehyde - melamine resins                                                                  | Melamine formaldehyde resin                | 98,0%          | 1                     |
|              |                                          |                                                                                                 | Water, tap                                 | 2,0%           |                       |
|              |                                          | Polyacrylic resin                                                                               | Polyacrylates                              | 100,0%         | 2                     |

| Category | Family               | Representative substance               | Process (see Table 14 for related dataset) | Composition | Modelling<br>accuracy |
|----------|----------------------|----------------------------------------|--------------------------------------------|-------------|-----------------------|
|          |                      |                                        | Polyurethane dispersion                    | 98,0%       |                       |
|          |                      | Polyurethane Resins                    | Water, tap                                 | 2,0%        | 5                     |
|          |                      |                                        | Styrene                                    | 12,5%       |                       |
|          |                      |                                        | Maleic anhydride                           | 12,5%       | 2                     |
|          |                      | Styrene - Maleic anhydride copolymers  | Ethoxylated alcohol (AE7)                  | 2,0%        | 3                     |
|          |                      |                                        | Water, tap                                 | 73,0%       |                       |
|          |                      |                                        | Urea-formaldehyde resin                    | 98,0%       | 2                     |
|          |                      | Urea - aldehyde Resins                 | Water, tap                                 | 2,0%        | 3                     |
|          |                      | Vinyl Chloride-Vinyl Acetate Copolymer | Ethylene vinyl acetate copolymer           | 100,0%      | 4                     |
|          |                      | Ammonium bicarbonate                   | Ammonium bicarbonate                       | 100,0%      | 1                     |
|          |                      | Ammonium chloride                      | Ammonium chloride                          | 100,0%      | 1                     |
|          |                      | A                                      | Ammonium sulfate                           | 21,0%       | 1                     |
|          |                      | Ammonium sulfate                       | Water, tap                                 | 79,0%       |                       |
|          |                      | Ferric chloride                        | Iron (III) chloride                        | 40,0%       | 4                     |
|          |                      |                                        | Water, tap                                 | 60,0%       | 1                     |
|          |                      | Ferrous chloride                       | Iron (III) chloride                        | 40,0%       | 3                     |
|          |                      |                                        | Water, tap                                 | 60,0%       |                       |
|          |                      | Forrous culphoto                       | Iron (II) sulphate                         | 48,0%       | 1                     |
|          |                      | Ferrous sulphate                       | Water, tap                                 | 52,0%       |                       |
|          | Various applications | Magnesium sulfate                      | Magnesium sulfate                          | 100,0%      | 1                     |
| Salts    |                      | Polyphosphates                         | Sodium tripolyphosphate                    | 100,0%      | 3                     |
|          |                      | Sodium bisulfite                       | Sodium hydrogen sulphite                   | 100,0%      | 1                     |
|          |                      | Sodium chloride                        | Sodium chloride                            | 100,0%      | 1                     |
|          |                      | Carlinea ablanta                       | Sodium hypochlorite                        | 15,0%       | 3                     |
|          |                      | Sodium chlorite                        | Water, tap                                 | 85,0%       | 5                     |
|          |                      | Sodium hydrosulphide                   | Sodium bicarbonate                         | 1,0%        |                       |
|          |                      |                                        | Sodium hydrosulphide                       | 72,0%       | 1                     |
|          |                      |                                        | Water, tap                                 | 27,0%       |                       |
|          |                      | Sadium hypochlarita                    | Sodium hypochlorite                        | 15,0%       | 1                     |
|          |                      | Sodium hypochlorite                    | Water, tap                                 | 85,0%       |                       |
|          |                      | Sodium phthalate                       | Polyethylene terephthalate (PET) granulate | 100,0%      | 4                     |

| Category       | Family                               | Representative substance                                                                    | Process (see Table 14 for related dataset) | Composition | Modelling<br>accuracy |
|----------------|--------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------|-------------|-----------------------|
|                |                                      | Sodium polyphosphate                                                                        | Sodium tripolyphosphate                    | 100,0%      | 3                     |
|                |                                      | Sodium sulfate                                                                              | Sodium sulphate                            | 100,0%      | 1                     |
|                |                                      | Continue autitate                                                                           | Sodium hydrosulphide                       | 61,0%       | 1                     |
|                |                                      | Sodium sulfide                                                                              | Water, tap                                 | 39,0%       | 1                     |
|                |                                      | Sodium sulfite                                                                              | Sodium sulphite                            | 100,0%      | 1                     |
|                |                                      | Sodium thiosulfate                                                                          | Sodium dithionite                          | 100,0%      | 1                     |
|                |                                      | Drowysthydothydonodiaminatriacestate                                                        | EDTA                                       | 39,0%       |                       |
| Sequestering   | Chelators                            | Droxyethylethylenediaminetriaacetate<br>(Na3HEDTA)                                          | Sodium hydroxide                           | 2,0%        | 1                     |
| agents         | Chelators                            | (NASHEDIA)                                                                                  | Water, tap                                 | 59,0%       |                       |
|                |                                      | Nitrilotriacetic acid                                                                       | EDTA                                       | 100,0%      | 4                     |
|                | Degreasing solvent                   | Perchloroethylene (PERC)                                                                    | Ethylene glycol                            | 100,0%      | 3                     |
|                | Finishing solvent                    | Acetone                                                                                     | Acetone                                    | 100,0%      | 1                     |
|                |                                      | Butyl Acetate                                                                               | Butyl acetate                              | 100,0%      | 1                     |
|                |                                      | Butyl Alcohol                                                                               | Butanol                                    | 100,0%      | 1                     |
|                |                                      | Dipropylene glycol methyl ether                                                             | Dipropylene glycol monomethyl ether        | 100,0%      | 1                     |
|                |                                      | Ethanol                                                                                     | Ethanol                                    | 100,0%      | 1                     |
| Solvents       |                                      | Ethyl acetate                                                                               | Ethyl acetate                              | 100,0%      | 1                     |
|                |                                      | Isopropanol                                                                                 | Isopropanol                                | 100,0%      | 1                     |
|                |                                      | Methoxyisopropanol - Isopropylic alcohol                                                    | Isopropanol                                | 100,0%      | 4                     |
|                |                                      | Methylic Alcohol                                                                            | Methanol                                   | 100,0%      | 1                     |
|                |                                      | Toluene                                                                                     | Benzene                                    | 1,0%        |                       |
|                |                                      |                                                                                             | Toluene                                    | 96,0%       | 1                     |
|                |                                      |                                                                                             | Xylene                                     | 3,0%        |                       |
|                |                                      | 2, 2-bis hydroxymethyl propionaldehyde                                                      | Acetaldehyde                               | 45,0%       | 5                     |
|                |                                      | solution                                                                                    | Water, tap                                 | 55,0%       |                       |
|                | Aldebudee                            | Formaldehyde                                                                                | Formaldehyde                               | 100,0%      | 1                     |
| Synthetic      | Aldehydes                            | Glutardialdehyde                                                                            | Acetaldehyde                               | 100,0%      | 4                     |
| organic        |                                      | Polyaldehydes                                                                               | Acetaldehyde                               | 45,0%       | _                     |
| tanning agents |                                      |                                                                                             | Water, tap                                 | 55,0%       | 5                     |
|                | Dihydroxydiphenyl-<br>sulfones (DDS) | Methylene-linked condensation product<br>of aryl sulphonic acids and hydroxyaryl<br>sulfone | Synthetic tannins and retanning agents     | 100,0%      | 4                     |

| Category  | Family               | Representative substance                                               | Process (see Table 14 for related dataset) | Composition | Modelling<br>accuracy |  |
|-----------|----------------------|------------------------------------------------------------------------|--------------------------------------------|-------------|-----------------------|--|
|           |                      | Hydroxyaryl derivatives (eg.                                           | Phenolic resin                             | 95,0%       |                       |  |
|           | Phenolic             | Phenolsuphonates)                                                      | Water, tap                                 | 5,0%        | 5                     |  |
|           |                      | A smaller in a horizonta                                               | Acrylic binder                             | 34,0%       |                       |  |
|           |                      | Acrylic polymers                                                       | Water, tap                                 | 66,0%       | 4                     |  |
|           |                      | Maleic/Styreic Copolymers                                              | Maleic anhydride                           | 50,0%       |                       |  |
|           |                      | Maleic/Styreic Copolymers                                              | Styrene                                    | 50,0%       | 4                     |  |
|           | Polymers             | Modified polyamide carboxylic acid                                     | Polycarboxylate                            | 40,0%       | 4                     |  |
|           |                      | Modified polyamide carboxylic acid                                     | Water, tap                                 | 60,0%       | 4                     |  |
|           |                      | Polycarbamoyl Sulfonate (PCMS)                                         | Alkylbenzene                               | 100,0%      | 5                     |  |
|           |                      | Polycarboxylates                                                       | Polycarboxylate                            | 40,0%       | 1                     |  |
|           |                      | Polycal boxylates                                                      | Water, tap                                 | 60,0%       | T                     |  |
|           | Triazine derivatives | Sodium p-[(4,6-dichloro-1,3,5-triazin-2-<br>yl)-amino]benzosulphonate] | Synthetic tannins and retanning agents     | 100,0%      | 5                     |  |
| Vegetable |                      | Extracts of Quebracho, mimosa, etc.                                    | Natural tannins extracted from chestnut    | 100,0%      | 3                     |  |
| tannins   | Hydrolysable         | Extract of chestnut, myrobalan, sumac, oak wood, tara, etc.            | Natural tannins extracted from chestnut    | 100,0%      | 2                     |  |
|           |                      | Beeswax                                                                | Beeswax                                    | 100,0%      | 1                     |  |
|           |                      | Compatible way                                                         | Wax                                        | 32,0%       | -                     |  |
|           |                      | Carnauba wax                                                           | Water, tap                                 | 68,0%       | 5                     |  |
| Waxes     | Finishing waxes      | Dereffin and nationality items way                                     | Wax                                        | 28,0%       | 3                     |  |
|           |                      | Paraffin and polyethilene wax                                          | Water, tap                                 | 72,0%       | 3                     |  |
|           |                      | Paraffin wax                                                           | Wax                                        | 40,0%       | 3                     |  |
|           |                      |                                                                        | Water, tap                                 | 60,0%       | 5                     |  |
|           | Antifoam agents      |                                                                        | Antifoaming agent, silicone emulsion       | 100,0%      | 1                     |  |
|           | Antiwrinkle products | Amines                                                                 | Diethanolamine                             | 23,0%       | 3                     |  |
|           |                      | AIIIIIES                                                               | Water, tap                                 | 77,0%       | 5                     |  |
| Others    |                      | (Benzothiazol-2-ylthio)methylthiocyanat                                | Benzo[thia]diazole-compound                | 35,0%       | 4                     |  |
|           |                      | (TCMTB)                                                                | Water, tap                                 | 65,0%       | 4                     |  |
|           | Biocides             |                                                                        | Benzo[thia]diazole-compound                | 18,0%       |                       |  |
|           |                      | 2-Octyl-2H-isothiazol-3-one (OIT)                                      | Bisphenol A powder                         | 22,0%       | 5                     |  |
|           |                      |                                                                        | Water, tap                                 | 60,0%       |                       |  |

| Category | Family                            | Representative substance                                           | Process (see Table 14 for related dataset) | Composition | Modelling<br>accuracy |
|----------|-----------------------------------|--------------------------------------------------------------------|--------------------------------------------|-------------|-----------------------|
|          |                                   |                                                                    | Benzo[thia]diazole-compound                | 15,0%       |                       |
|          |                                   | N,N-dimethyl-dithiocarbamic acid, Na salt                          | Bisphenol A powder                         | 15,0%       | 5                     |
|          |                                   | Sodium Dimethyldithiocarbamate (SDDC)                              | Water, tap                                 | 70,0%       |                       |
|          |                                   | Orthe Dhenviehenel and Sadiver (ODD)                               | Bisphenol A powder                         | 13,1%       | -                     |
|          |                                   | Ortho-Phenylphenol and Sodium (OPP)                                | Water, tap                                 | 86,9%       | 5                     |
|          |                                   |                                                                    | Benzo[thia]diazole-compound                | 19,0%       |                       |
|          |                                   | Para-chloro-meta-cresol                                            | Bisphenol A powder                         | 19,0%       | 5                     |
|          |                                   |                                                                    | Water, tap                                 | 62,0%       |                       |
|          |                                   | Sulphur compounds                                                  | Sodium dithionite                          | 40,0%       | 2                     |
|          |                                   | Sulphur compounds                                                  | Water, tap                                 | 60,0%       | 3                     |
|          |                                   | Hydrogen peroxide                                                  | Hydrogen peroxide                          | 100,0%      | 1                     |
|          |                                   | Potassium permanganate aquox                                       | Potassium permanganate                     | 97,5%       | 1                     |
|          |                                   | Potassium permanganate aquox                                       | Water, tap                                 | 2,5%        | T                     |
|          | Bleaching or dehairing            | Sodium dithionite                                                  | Sodium dithionite                          | 70,0%       | 1                     |
|          | agent                             | Socium armonite                                                    | Water, tap                                 | 30,0%       | T                     |
|          |                                   | Sodium percarbonate                                                | Sodium percarbonate                        | 85,0%       | 1                     |
|          |                                   | Socium percarbonate                                                | Sodium bicarbonate                         | 15,0%       | T                     |
|          |                                   | Organic dehairing agents (Mercaptides)                             | Sodium hydrosulphide                       | 100,0%      | 5                     |
|          |                                   | Aliphatic reactive polyisocyanates and<br>ethyl 3-ethoxypropionate | Methylene diphenyldiisocyanate             | 100,0%      | 5                     |
|          | Crosslinkers (finishing)          | Aziridine                                                          | Diethanolamine consumption                 | 100,0%      | 5                     |
|          |                                   | Carbadiimidas                                                      | Methylene diphenyldiisocyanate             | 40,0%       | -                     |
|          |                                   | Carbodiimides                                                      | Water, tap                                 | 60,0%       | 5                     |
|          | Effluent Treatment                | Delveendemide                                                      | Polyacrylamide                             | 85,0%       | 1                     |
|          | Plant (ETP) polymeric             | Polyacrylamide                                                     | Water, tap                                 | 15,0%       | T                     |
|          | Flocculants, polyelectrolytes and | Polyaluminium chloride                                             | Polyaluminium chloride                     | 45,0%       | 1                     |
|          | coagulants                        |                                                                    | Water, tap                                 | 55,0%       |                       |
|          |                                   | Minerals                                                           | Antimony                                   | 100,0%      | 4                     |
|          | Flame retardant                   | Organskalasen som svir da                                          | Antimony                                   | 50,0%       | _                     |
|          | agents                            | Organohalogen compounds                                            | Phosphoryl chloride                        | 50,0%       | 5                     |
|          |                                   | Organophosphorous compounds                                        | Phosphoryl chloride                        | 100,0%      | 4                     |

| Category | Family           | Representative substance         | Process (see Table 14 for related dataset) | Composition | Modelling<br>accuracy |  |  |
|----------|------------------|----------------------------------|--------------------------------------------|-------------|-----------------------|--|--|
|          |                  |                                  | Tetrafluoroethane                          | 28,0%       |                       |  |  |
|          | Halide Compounds | Fluorochemical acrylate polymers | Triethylene glycol                         | 8,5%        | F                     |  |  |
|          |                  | Fidorochemical acrylate polymers | Fatty alcohols                             | 1,0%        | 5                     |  |  |
|          |                  |                                  | Water, tap                                 | 62,5%       |                       |  |  |
|          |                  | Water based silicones            | Antifoaming agent, silicone emulsion       | 30,0%       | Л                     |  |  |
|          | Handle modifiers | Water based sincories            | Water, tap                                 | 70,0%       | 4                     |  |  |
|          |                  | Waxes and oils                   | Wax                                        | 8,5%        | F                     |  |  |
|          |                  | waxes and ons                    | Water, tap                                 | 91,5%       | 5                     |  |  |
|          |                  | Acrylic polymers                 | Acrylic binder                             | 11,0%       |                       |  |  |
|          | Render           | Polyurethane                     | Polyurethane dispersion                    | 14,5%       | 1                     |  |  |
|          |                  | Inorganic fillers (silica)       | Activated silica                           | 14,5%       | 4                     |  |  |
|          |                  | morganic mers (sinca)            | Water, tap                                 | 60,0%       |                       |  |  |

#### **1088** Table 37 Default LCI for slaughterhouse to be used (Data refers to 1 kg of live weight)

|                          | Amount  | Unit | Process (see Table 14 and Table 27 for related datasets) |
|--------------------------|---------|------|----------------------------------------------------------|
| Electricity              | 33,89   | KJ   | Electricity from grid consumption                        |
| Natural Gas              | 4,18    | I    | Thermal energy from natural gas consumption              |
| Well Water               | 0,37741 | Ι    | Water, tap consumption                                   |
| Wastewater <sup>35</sup> | 0,37720 | I    | Treatment of wastewater                                  |
| Transport <sup>36</sup>  | 90,00   | kgkm | Transportation of raw hides / skins on lorry             |

#### 1089 Table 38 Default distances to consider for transportation

| Route                                                     | Distance [km] |
|-----------------------------------------------------------|---------------|
| Slaughterhouse to raw hides and skins preservation        | 50            |
| Raw hides and skins preservation to tannery <sup>37</sup> | 500           |

#### 1090 Table 39 Chromium recovery CFF

| Parameter                                                | Process (Table 14)                    | Composition |
|----------------------------------------------------------|---------------------------------------|-------------|
| E <sub>v</sub> = E*v                                     | Basic chrome sulfate consumption      | 0,26        |
| $\mathbf{E}_{\mathbf{V}} = \mathbf{E}^{\top} \mathbf{V}$ | Sodium sulphate consumption           | 0,74        |
| E _E                                                     | Waste incineration of hazardous waste | 0,50        |
| E <sub>d</sub> =E <sub>d*</sub>                          | Waste incineration of solid waste     | 0,50        |

 $<sup>^{\</sup>rm 35}$  Only one of the reported datasets shall be selected.

<sup>&</sup>lt;sup>36</sup> Transport from farm to slaughterhouse.

<sup>&</sup>lt;sup>37</sup> Default data to be used only in case of purchase of semi-processed materials and unavailability of primary data.

### 1092 ANNEX 8 – Background information on methodological choices

- 1093 All impact categories required by the ILCD and the PEF methodology have been evaluated. Most relevant 1094 impact categories have been defined based on normalised results and sectorial relevance.
- 1095 Since leather is a bio-based intermediate product, the carbon storage of leather has to be considered as a 1096 relevant additional environmental information.
- 1097 Allocation Step-by-Step Methodology Description

#### 1098 Overture

Mass allocation of environmental impacts for the core leather manufacturing processes and for the various input processing materials will be based on the biobased and biogenic protein content (primary collagen, but also elastin, keratin, other types of sclero-proteins and proteoglycans) recovered or/and valorised with all possible core processes outputs which bear an economic value and are not classified as waste. N-proteic content, can be directly and reliably quantified and measured as Proteic-Nitrogen content, whilst routinely and systematically expressed as "hide substance" (in other languages the term used is "dermal substance" and in some cases "dermal matter").

1106 <u>Equation 1</u>: Hide Substance [g] = N-proteic content [g] × 5.62

1107 The Standard Leather Testing method applicable for both the Nitrogen content determination and the 1108 calculation of Hide substance content thereof is ISO 5397:1984, whilst quick and reliable measurements of 1109 protein content can be carried out on site using the most recently developed and commercialised 1110 SpectraMax<sup>®</sup> QuickDrop<sup>™</sup> Micro-Volume Spectrophotometer - see attached technical data sheet.

#### 1111 Vade Mecum

1112 Starting point for all the calculations were published and industrial average data regarding the main 1113 ingredients composition of the raw materials of various animal origins and preservation methods.

Along these lines, the average of biobased protein and N-proteic contents, expressed in g, have been quantified and reported in the literature for the main products, by-products and waste-effluent generated. The most comprehensive and complete protein and N-proteic mass balance and the related values for bovine, calf, and ovicaprine hides/skins, pickled pelts – when applicable - and leathers (semi-processed, semi-

- 1118 finished and finished) can be found in Table 40 and in the one reported below.
- 1119 Moreover, the N-Mass Balance for all outputs (products, by-products, waste, biolsolids and effluent 1120 generated at the ETP) for four (4) production lines and raw materials from four (4) animal origins (bovine, 1121 calf, lamb and kid) have been reported in the literature ([1]. In particular, the outputs' quantities and the 1122 corresponding quota of N-proteic contents (%) can be found in the table reported below.
- 1123 These, in turn, constituted the starting point the generation of the complete inventory of default allocation 1124 factors to be employed, when primary datasets were not collected or available for the purposes of a PEF-1125 study.
- 1126 In general, data for bovine leather production are abundant in the literature, whereas, for ovi-caprine skins 1127 processing, this information is scarce and seldom published, accordingly (Table 40).

#### 1128 Table 40 Preliminary N-proteic and hide substance quantities for input and outputs of Leather making process

| Proteinous-N Mass<br>Balance |                                                                           | Wet<br>Salted Wet salted<br>Bovine Calf-Veals,<br>Hides, Splitting in<br>Splitting in Lime [<20<br>Blue ([>20 kg]<br>kg] |       | Pickled<br>Sheep<br>Skins, No<br>splitting<br>[1<br>kg/piece]<br>Wet<br>Salted<br>Sheep<br>Skins, No<br>splitting<br>[1,5<br>kg/piece]<br>Quantity |                | Goat<br>Skins<br>splitt<br>[0,45 | Air DriedHeavy WetpGoatSaltedASkins, NoBovinefsplittingHides, NoS[0,45splittingE |     | Bovine N-<br>protein<br>Allocation<br>from Wet<br>Salted<br>Bovine<br>Hides | Calves N-<br>protein<br>Allocation<br>from<br>Wet-<br>salted<br>Calf/Veal<br>Skins | Ovine N-<br>protein<br>Allocation<br>from<br>Wet-<br>salted<br>Ovine<br>Skins | Ovine N-<br>protein<br>Allocation<br>from<br>Pickled<br>Ovine<br>Pelts<br>ning | Caprine<br>N-protein<br>Nitrogen<br>Allocation<br>from Air-<br>Dried<br>Skins | Bovine N-<br>protein<br>Allocation<br>from Wet<br>Salted<br>Bovine<br>Hides |       |       |      |      |       |
|------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------|----------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------|-------|------|------|-------|
|                              |                                                                           | g                                                                                                                        | g-N   | g                                                                                                                                                  | g-N            | g                                | g-N                                                                              | g   | g-N                                                                         | g                                                                                  | g-N                                                                           | g                                                                              | g-N                                                                           | Cr                                                                          | Cr    | Cr    | Cr   | Cr   | Veg   |
|                              | Wet Salted                                                                | 40                                                                                                                       | 2,4   | 30                                                                                                                                                 | 1,8            |                                  |                                                                                  | 60  | 1,9                                                                         |                                                                                    |                                                                               | 40                                                                             | 2,4                                                                           | 4%                                                                          | 3%    | 3,1%  |      |      | 4%    |
| Trimmings                    | Air-dried                                                                 |                                                                                                                          | ,     |                                                                                                                                                    | ,-             |                                  |                                                                                  |     | /-                                                                          | 140                                                                                | 18,9                                                                          |                                                                                | ,                                                                             |                                                                             |       |       |      | 25%  |       |
| Ū                            | Pickled                                                                   |                                                                                                                          |       |                                                                                                                                                    |                | 30                               | 1,2                                                                              |     |                                                                             |                                                                                    |                                                                               |                                                                                |                                                                               |                                                                             |       |       | 2,9% |      |       |
| Hair - wool<br>(recovered)   |                                                                           | Hair E<br>In Slu                                                                                                         |       | Hair I<br>In Slu                                                                                                                                   | Burn -<br>Idge |                                  |                                                                                  | 130 | 21                                                                          | Hair<br>In Slu                                                                     | Burn -<br>Idge                                                                | Hair B<br>In Slu                                                               |                                                                               |                                                                             |       | 34,7% |      |      |       |
| (,                           | Green                                                                     |                                                                                                                          | - 0 - | 70                                                                                                                                                 | 3,2            |                                  |                                                                                  |     |                                                                             |                                                                                    |                                                                               |                                                                                |                                                                               |                                                                             | 5,2%  |       |      |      |       |
| Fleshings                    | Lime                                                                      | 170                                                                                                                      | 2,7   |                                                                                                                                                    |                |                                  |                                                                                  | 110 | 1,4                                                                         | 240                                                                                | 3,8                                                                           |                                                                                |                                                                               | 4,5%                                                                        |       | 2,3%  |      |      |       |
| Ū                            | Pickle                                                                    |                                                                                                                          |       |                                                                                                                                                    |                | 50                               | 1,2                                                                              |     |                                                                             |                                                                                    |                                                                               |                                                                                |                                                                               |                                                                             |       |       | 2,9% |      |       |
| Reject                       | Limed                                                                     |                                                                                                                          |       | 160                                                                                                                                                | 6,2            |                                  |                                                                                  |     |                                                                             |                                                                                    |                                                                               | 160                                                                            | 6,2                                                                           |                                                                             | 10,2% |       |      |      | 10,3% |
| splits and<br>trimmings      | Cr                                                                        | 120                                                                                                                      | 9,6   |                                                                                                                                                    |                |                                  |                                                                                  |     |                                                                             |                                                                                    |                                                                               |                                                                                |                                                                               | 16%                                                                         |       |       |      |      |       |
| Shavings                     | Cr-tanned                                                                 | 50                                                                                                                       | 4,3   | 60                                                                                                                                                 | 5,2            | 10                               | 0,8                                                                              | 10  | 0,8                                                                         | 60                                                                                 | 5,2                                                                           |                                                                                |                                                                               | 7,2%                                                                        | 8,5%  | 1,3%  | 2%   | 6,9% |       |
| (+buffing<br>dust)           | Veg-tanned                                                                |                                                                                                                          |       |                                                                                                                                                    |                | 20                               | 1,5                                                                              |     |                                                                             |                                                                                    |                                                                               | 87                                                                             | 7,5                                                                           |                                                                             |       |       |      |      | 12,5% |
|                              | Finished Cr-<br>tanned                                                    | 10                                                                                                                       | 1,2   | 20                                                                                                                                                 | 2,4            | 10                               | 1,2                                                                              | 10  | 1,2                                                                         | 50                                                                                 | 6                                                                             |                                                                                |                                                                               | 2%                                                                          | 3,9%  | 2%    | 2,9% | 7,9% |       |
| Trimmings                    | Finished<br>Veg-tanned                                                    |                                                                                                                          |       |                                                                                                                                                    |                | 20                               | 1,5                                                                              |     |                                                                             |                                                                                    |                                                                               | 62,5                                                                           | 7,5                                                                           |                                                                             |       |       |      |      | 12,5% |
|                              | Total<br>Protein-N in<br>Raw Skin<br>/Hide/<br>Picled<br>Pelt/Wet<br>blue |                                                                                                                          | 60    |                                                                                                                                                    | 61             |                                  | 41                                                                               |     | 60,6                                                                        |                                                                                    | 135                                                                           |                                                                                | 60                                                                            |                                                                             |       |       |      |      |       |
|                              | Protein-N in<br>limed or<br>wet blue<br>flesh splits                      |                                                                                                                          | 9,6   |                                                                                                                                                    | 10,6           |                                  |                                                                                  |     |                                                                             |                                                                                    |                                                                               |                                                                                |                                                                               | 16%                                                                         | 17,4% |       |      |      |       |

| Proteinous-N Mass<br>Balance |                                                                                                    |   | ne       | Calf-<br>Split | salted<br>Veals,<br>ting in<br>e [<20 | split<br>[1 | ep<br>ns, No<br>tting<br>piece] | Wet<br>Salte<br>Shee<br>Skins<br>splitt<br>[1,5<br>kg/pi | p<br>, No<br>ing | Air D<br>Goat<br>Skins<br>splitt<br>[0,45<br>kg/p | , No<br>ing | Heavy<br>Salted<br>Bovin<br>Hides<br>splitti | d<br>ie<br>5, No | Bovine N-<br>protein<br>Allocation<br>from Wet<br>Salted<br>Bovine<br>Hides | Calves N-<br>protein<br>Allocation<br>from<br>Wet-<br>salted<br>Calf/Veal<br>Skins | Ovine N-<br>protein<br>Allocation<br>from<br>Wet-<br>salted<br>Ovine<br>Skins | Ovine N-<br>protein<br>Allocation<br>from<br>Pickled<br>Ovine<br>Pelts | Caprine<br>N-protein<br>Nitrogen<br>Allocation<br>from Air-<br>Dried<br>Skins | Bovine N-<br>protein<br>Allocation<br>from Wet<br>Salted<br>Bovine<br>Hides |
|------------------------------|----------------------------------------------------------------------------------------------------|---|----------|----------------|---------------------------------------|-------------|---------------------------------|----------------------------------------------------------|------------------|---------------------------------------------------|-------------|----------------------------------------------|------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|                              |                                                                                                    |   |          |                |                                       |             |                                 | antity                                                   |                  |                                                   |             |                                              |                  | 0.                                                                          | 0                                                                                  |                                                                               | ning                                                                   | 0                                                                             |                                                                             |
|                              |                                                                                                    | g | g-N      | g              | g-N                                   | g           | g-N                             | g                                                        | g-N              | g                                                 | g-N         | g                                            | g-N              | Cr                                                                          | Cr                                                                                 | Cr                                                                            | Cr                                                                     | Cr                                                                            | Veg                                                                         |
|                              | Protein-N in<br>finished<br>grain split                                                            |   | 19,1     |                | 20,6                                  |             | 28,4                            |                                                          | 28,4             |                                                   | 75,7        |                                              | 25,3             | 31,8%                                                                       | 33,8%                                                                              | 69,3%                                                                         | 46,9%                                                                  | 56,1%                                                                         | 42,2%                                                                       |
|                              | Total<br>Protein-N in<br>Solid<br>Waste, not<br>including<br>recovered<br>wool                     |   | 20,2     |                | 18,8                                  |             | 7,1                             |                                                          | 5,3              |                                                   | 33,9        |                                              | 23,6             | 33,7%                                                                       | 30,8%                                                                              | 17,3%                                                                         | 8,7%                                                                   | 25,1%                                                                         | 39,3%                                                                       |
|                              | Total<br>Protein-N in<br>ETP-Sludge                                                                |   | 5,7      |                | 5,9                                   |             | 2,5                             |                                                          | 2,9              |                                                   | 13,5        |                                              | 5,7              | 9,5%                                                                        | 9,7%                                                                               | 6,1%                                                                          | 4,8%                                                                   | 10%                                                                           | 9,5%                                                                        |
|                              | Total<br>Protein-N<br>recoverable<br>Losses (e.g.<br>Hair or<br>Wool if<br>recovered<br>for skins) |   | 5,4      |                | 5,1                                   |             | 3                               |                                                          | 24               |                                                   | 11,9        |                                              | 5,4              | 9%                                                                          | 8,4%                                                                               | 7,3%                                                                          | 39,6%                                                                  | 8,8%                                                                          | 9%                                                                          |
|                              |                                                                                                    |   | <u> </u> |                |                                       | _           |                                 |                                                          |                  | _                                                 |             |                                              |                  | 100%                                                                        | 100%                                                                               | 100%                                                                          | 100%                                                                   | 100%                                                                          | 100%                                                                        |

1130 The obtained preliminary results for the quantities of N-proteic Nitrogen, and equally hide substance, were

summarised for all four (4) types of raw materials in the following Table 41.

#### 1132 Table 41 Preliminary N-proteic contents for 1 kg of raw input material

| Raw material [1 kg]                         | Wet salted<br>bovine hides<br>[>20 kg] | Wet salted<br>calf-veals [<20<br>kg] | Caprine air-<br>dried skins | Pickled<br>sheep skins | Wet salted sheep skins |
|---------------------------------------------|----------------------------------------|--------------------------------------|-----------------------------|------------------------|------------------------|
| Protein-N in finished<br>leather [g-N]      | 28,7                                   | 31,2                                 | 75,7                        | 28,4                   | 19,0                   |
| Protein-N in solid<br>waste [g-N]           | 20,2                                   | 18,8                                 | 33,9                        | 7,1                    | 3,5                    |
| Protein-N in ETP<br>sludge [g-N]            | 5,7                                    | 5,9                                  | 13,5                        | 2,5                    | 1,9                    |
| Recoverable losses<br>(e.g. Hair, if saved) | 5,4                                    | 5,1                                  | 11,9                        | 3,0                    | 2,0                    |
| Wool recovered [g-N]                        | -                                      | -                                    | -                           | -                      | 14,0                   |
| Sub totals                                  | 60                                     | 61                                   | 135                         | 41                     | 40                     |
| % in finished leather<br>(including splits) | 48                                     | 52                                   | 56                          | 69                     | 47                     |

#### 1133 The corresponding calculated quota (%) hide substance and N-proteic content are reported in Table 42.

1134 Table 42 Preliminary N-proteic and hide substance % partition for the various raw materials

|                            | us-N Mass<br>ance      | Bovine N-<br>protein<br>Allocation<br>from Wet<br>Salted<br>Bovine<br>Hides | Calves N-<br>protein<br>Allocation<br>from Wet-<br>salted<br>Calf/Veal<br>Skins |       | Ovine N-<br>protein<br>Allocation<br>from<br>Pickled<br>Ovine<br>Pelts<br>ning | Caprine<br>N-protein<br>Nitrogen<br>Allocation<br>from Air-<br>Dried<br>Skins | Bovine N-<br>protein<br>Allocation<br>from Wet<br>Salted<br>Bovine<br>Hides |
|----------------------------|------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|                            |                        | Cr                                                                          | Cr                                                                              | Cr    | Cr                                                                             | Cr                                                                            | Veg                                                                         |
|                            | Wet Salted             | 4%                                                                          | 3%                                                                              | 3,1%  |                                                                                |                                                                               | 4%                                                                          |
| Trimmings                  | Air-dried              |                                                                             |                                                                                 |       |                                                                                | 25%                                                                           |                                                                             |
|                            | Pickled                |                                                                             |                                                                                 |       | 2,9%                                                                           |                                                                               |                                                                             |
| Hair - Wool<br>(recovered) |                        |                                                                             |                                                                                 | 34,7% |                                                                                |                                                                               |                                                                             |
|                            | Green                  |                                                                             | 5,2%                                                                            |       |                                                                                |                                                                               |                                                                             |
| Fleshings                  | Lime                   | 4,5%                                                                        |                                                                                 | 2,3%  |                                                                                |                                                                               |                                                                             |
|                            | Pickle                 |                                                                             |                                                                                 |       | 2,9%                                                                           |                                                                               |                                                                             |
| Reject                     | Limed                  |                                                                             | 10,2%                                                                           |       |                                                                                |                                                                               | 10,3%                                                                       |
| Splits and<br>Trimmings    | Cr                     | 16%                                                                         |                                                                                 |       |                                                                                |                                                                               |                                                                             |
| Shavings                   | Cr-tanned              | 7,2%                                                                        | 8,5%                                                                            | 1,3%  | 2%                                                                             | 6,9%                                                                          |                                                                             |
| (+Buffing<br>Dust)         | Veg-tanned             |                                                                             |                                                                                 |       |                                                                                |                                                                               | 12,5%                                                                       |
| Trimmings                  | Finished Cr-<br>tanned | 2%                                                                          | 3,9%                                                                            | 2%    | 2,9%                                                                           | 7,9%                                                                          |                                                                             |
| mmings                     | Finished<br>Veg-tanned |                                                                             |                                                                                 |       |                                                                                |                                                                               | 12,5%                                                                       |

| Proteinous-N<br>Balance       |                                                                                     | Bovine N-<br>protein<br>Allocation<br>from Wet<br>Salted<br>Bovine<br>Hides | Calves N-<br>protein<br>Allocation<br>from Wet-<br>salted<br>Calf/Veal<br>Skins | Ovine N-<br>protein<br>Allocation<br>from Wet-<br>salted<br>Ovine<br>Skins | Ovine N-<br>protein<br>Allocation<br>from<br>Pickled<br>Ovine<br>Pelts | Caprine<br>N-protein<br>Nitrogen<br>Allocation<br>from Air-<br>Dried<br>Skins | Bovine N-<br>protein<br>Allocation<br>from Wet<br>Salted<br>Bovine<br>Hides |  |  |  |  |  |
|-------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|
|                               |                                                                                     | Tanning<br>Cr Cr Cr Cr Veg                                                  |                                                                                 |                                                                            |                                                                        |                                                                               |                                                                             |  |  |  |  |  |
| Ra<br>/Hi<br>Pic              | otein-N in<br>w Skin<br>ide/<br>cled<br>lt/Wet                                      |                                                                             |                                                                                 |                                                                            |                                                                        |                                                                               |                                                                             |  |  |  |  |  |
| Pro<br>lim<br>we              | otein-N in<br>ned or<br>et blue<br>sh splits                                        | 16%                                                                         | 17,4%                                                                           |                                                                            |                                                                        |                                                                               |                                                                             |  |  |  |  |  |
| fin<br>gra                    | otein-N in<br>ished<br>ain split<br>ather                                           | 31,8%                                                                       | 33,8%                                                                           | 69,3%                                                                      | 46,9%                                                                  | 56,1%                                                                         | 42,2%                                                                       |  |  |  |  |  |
| Sol<br>Wa<br>inc              | otein-N in<br>lid<br>aste, not<br>cluding<br>covered                                | 33,7%                                                                       | 30,8%                                                                           | 17,3%                                                                      | 8,7%                                                                   | 25,1%                                                                         | 39,3%                                                                       |  |  |  |  |  |
|                               | tal<br>otein-N in<br>P-Sludge                                                       | 9,5%                                                                        | 9,7%                                                                            | 6,1%                                                                       | 4,8%                                                                   | 10%                                                                           | 9,5%                                                                        |  |  |  |  |  |
| rec<br>Los<br>Ha<br>Wo<br>rec | tal<br>otein-N<br>coverable<br>sses (e.g.<br>ir or<br>ool if<br>covered<br>r skins) | 9%                                                                          | 8,4%                                                                            | 7,3%                                                                       | 39,6%                                                                  | 8,8%                                                                          | 9%                                                                          |  |  |  |  |  |
|                               | ,                                                                                   | 100%                                                                        | 100%                                                                            | 100%                                                                       | 100%                                                                   | 100%                                                                          | 100%                                                                        |  |  |  |  |  |

1136 However, it soon, became apparent however, that it was necessary:

• To integrate average primary high quality data from the latest and complete LCA for the Italian and Spanish Tanneries. This was particularly important for the quantities of Hide substance and thereof N-proteic contents for the bovine and calf leathers production, since all previous reports the total quantity of protein and N-proteic content was determined for grain and flesh splits but a clear

- 1141 division of hide substance content between the two co-products was presented in United Nations
- 1142 Industrial Development Organization (UNIDO) benchmark for the Tanning Sector, as shown below;
- 1143Table 43 Collagen distribution wet salted hide, finished leather and solid waste (Starting material: 1 000 kg wet salted raw1144hides, splitting in chrome)

|           | Component                          |     | Amount of co         | llagen              |
|-----------|------------------------------------|-----|----------------------|---------------------|
|           | Component                          | kg  | % of corium collagen | % of total collagen |
|           | Corium (leather building) collagen | 280 | 100,0                | 92,0                |
| Input     | Subcutis collagen                  | 24  | -                    | 8,0                 |
|           | Total collagen input               | 304 | -                    | 100,0               |
| Output    | Grain leather                      | 113 | 40,0                 | 37,2                |
| Output    | Split leather                      | 36  | 13,0                 | 11,8                |
| Total co  | lagen in finished leather          | 149 | 53,0                 | 49,0                |
| Fleshing  |                                    | 24  | From subcutis        | 8,0                 |
| Trimmin   | gs                                 | 18  | 6,5                  | 6,0                 |
| Unusabl   | e chrome split                     | 49  | 17,5                 | 16,1                |
| Shavings  | 6                                  | 45  | 16,0                 | 15,0                |
| Wet blue  | e trimmings                        | 9   | 3,0                  | 2,8                 |
| Crust lea | ither waste                        | 5   | 1,8                  | 1,6                 |
| Buffing o | lust                               | 1   | 0,4                  | 0,3                 |
| Finished  | leather off-cuts                   | 4   | 1,6                  | 1,3                 |
| Total co  | lagen in solid waste               | 155 | 47,0                 | 51,0                |
| Total co  | lagen output                       | 304 | 100                  | 100                 |

- These data were compared and corrected Preliminary by integrating the corresponding partition of N-proteic contents determined from primary data during the LCA carried out for a Romanian Tannery<sup>38</sup> and the related partitioned values of hide substance are highlighted with yellow shading in Table 41.
- To extend the N-mass balance and default values sets with average sector specific N-proteic content values for all possible intermediate products, by-products and the solid waste biosolids generated by the core processes. This primarily concerned full vegetable tanned sole leather with preliminary industrial data were integrated for this purpose in Table 4, as well as all possible input processing materials commercialised as limed pelts, split leathers, pickled pelts and crust leathers.

<sup>&</sup>lt;sup>38</sup> Romanian Tannery LCA [(PIELOREX) Systematic analytical survey of the composition of raw hides, pelts, semiprocessed and finished leathers and waste generated during industrial scale production: Innovaleather Project www.innovaleather.ro, 2014, Bucharest, Romania] and a commercial lot

- 1154 To enable the calculation of allocation factors in function of the following chemical and mechanical operations deployed in the Tannery: 1155 The dehairing/dewooling chemical operations ("hair burn" or "hair save" and "wool save" 1156 0 1157 respectively); 1158 The various splitting mechanical operations, when applicable – namely splitting in lime, blue 0 1159 splitting and splitting in pickle, whereas green splitting is a Best Available Technique (BAT) but only seldom applicable hitherto and skiving (dry-splitting has not been incorporated as a 1160 1161 possible scenario usually employed by downstream end users); The various fleshing operations ("green fleshing" or/and "lime fleshing"); 1162 0 1163 The broad tanning technologies categories, which very much determine process efficiency, 0 1164 composition and quantities of outputs.
- "Dry-shaving" of some types of semi-finished and finished leathers has not been yet included since suchprimary or generic data are not available.
- 1167 Along these lines, Sector specific N-proteic contents and protein quantities for waste and by-products were
- sourced from various sources. These in several cases came from National Sectoral surveys undertaken by
- 1169 Trade Associations, UNIDO. On the other hand, the partition of hide substance for the whole production cycle
- 1170 for the manufacture of finished upper bovine leathers and Italian Tanneries was sourced by the only
- 1171 previously existing LCA studies for the Italian and Spanish Sectors<sup>39</sup>. The flow chart and values reported with
- the LCA were converted into a practical table, used for the determination of the allocation factors for bovine
- 1173 leather production.

<sup>&</sup>lt;sup>39</sup> Rita Puig et al, Industrial ecology in the cattle-to-leather supply chain, pages 42-43 - ISBN 978-88-464-9696-6,, Francoangeli srl, 2007, Milano. Italy

#### 1174 Table 44 Italian Tanneries input and outputs quantities

| Raw Material, Intermediate<br>& Finished Products |                                | Raw<br>Hide<br>Wet<br>Salted | Soaked<br>Hide | Limed Pelt<br>(full<br>substance) | Fleshed<br>Limed<br>Pelt | Grain<br>Lime<br>Split<br>Pelts | Delimed /<br>Degreased<br>/ Bated<br>Pelts | Wet<br>Blue<br>Leathers | Pressed<br>Wet Blue<br>Leathers | Shaved<br>Wet Blue<br>Leathers | Retanned-<br>Dyed-<br>Fatliquored<br>Leathers | Crust<br>Leathers | Trimmed<br>Crust<br>Leathers | Finished<br>Leather |
|---------------------------------------------------|--------------------------------|------------------------------|----------------|-----------------------------------|--------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|-----------------------------------------------|-------------------|------------------------------|---------------------|
| Weight [kgs]                                      |                                | 1 000                        | 1 139          | 1 460                             | 1 147,7                  | 665,4                           | 604,2                                      | 571,3                   | 342,8                           | 296,2                          | 663,6                                         | 195,2             | 182,9                        | 200                 |
| Weight Conver                                     | Weight Conversion Factor       |                              | 1,14           | 1,46                              | 1,15                     | 0,67                            | 0,6                                        | 0,57                    | 0,34                            | 0,3                            | 0,66                                          | 0,2               | 0,18                         | 0,2                 |
| Water [dm <sup>3</sup> ]                          |                                |                              | 3 500          | 3 000                             | 150                      | 330                             | 3 400                                      | 1 600                   |                                 |                                | 4 000                                         |                   |                              | 210                 |
|                                                   | Humidity<br>[kg]               | 450                          | 793            | 1 168                             | 895,2                    | 505,7                           | 459,2                                      | 399,9                   | 171,4                           | 148,1                          | 497,7                                         | 29,3              | 27,4                         | 30                  |
|                                                   | Sodium<br>Chloride<br>[kg]     | 180                          |                |                                   |                          |                                 |                                            |                         |                                 |                                |                                               |                   |                              |                     |
|                                                   | Hide<br>Substance              | 370                          | 340            | 280                               | 242,5                    | 154,2                           | 145                                        | 145                     | 145                             | 125,3                          | 125,3                                         | 125,3             | 117,5                        | 117,5               |
|                                                   | Other<br>Substances            |                              |                |                                   |                          |                                 |                                            |                         |                                 | 22,8                           | 40,6                                          | 40,6              | 3,4                          |                     |
|                                                   | Lime                           |                              |                | 12                                | 10                       | 5,5                             |                                            |                         |                                 |                                |                                               |                   |                              |                     |
| Material And                                      | Mineral<br>Substances          |                              |                |                                   |                          |                                 |                                            | 14,9                    | 14,9                            |                                |                                               |                   |                              |                     |
| Products:<br>Quantities -<br>Ingredients          | Added<br>Chemical<br>Products  |                              |                |                                   |                          |                                 |                                            |                         |                                 |                                |                                               |                   |                              | 38                  |
| -                                                 | Chromium<br>(III)              |                              |                |                                   |                          |                                 |                                            | 11,5                    | 11,5                            |                                |                                               |                   | 6,8                          |                     |
|                                                   | Added<br>Fatty<br>Substances   |                              |                |                                   |                          |                                 |                                            |                         |                                 |                                |                                               |                   | 13,9                         |                     |
|                                                   | Added<br>Retanning<br>Agents   |                              |                |                                   |                          |                                 |                                            |                         |                                 |                                |                                               |                   | 13,9                         |                     |
|                                                   | Added<br>Finishing<br>Products |                              |                |                                   |                          |                                 |                                            |                         |                                 |                                |                                               |                   |                              | 14,5                |
|                                                   | Hair                           |                              |                | 100                               |                          |                                 |                                            |                         |                                 |                                |                                               |                   |                              |                     |
| Du Duo duata                                      | Humidity                       |                              |                | 70                                | 158                      | 218,4                           |                                            |                         |                                 | 23,3                           |                                               |                   | 19                           |                     |
| By-Products<br>& Wastes:                          | Dermal<br>Material             |                              |                | 30                                |                          |                                 |                                            |                         |                                 |                                |                                               |                   |                              |                     |
| Quantities -                                      | Fleshings                      |                              |                |                                   | 197,5                    |                                 |                                            |                         |                                 |                                |                                               |                   |                              |                     |
| Ingredients                                       | Hide<br>Substance              |                              |                |                                   | 37,5                     | 88,3                            |                                            |                         |                                 | 19,7                           |                                               |                   | 7,8                          |                     |

| Raw Material, Intermediate<br>& Finished Products |                    | Raw<br>Hide<br>Wet<br>Salted | Soaked<br>Hide | Limed Pelt<br>(full<br>substance) | Fleshed<br>Limed<br>Pelt | Grain<br>Lime<br>Split<br>Pelts | Delimed /<br>Degreased<br>/ Bated<br>Pelts | Wet<br>Blue<br>Leathers | Pressed<br>Wet Blue<br>Leathers | Shaved<br>Wet Blue<br>Leathers | Retanned-<br>Dyed-<br>Fatliquored<br>Leathers | Crust<br>Leathers | Trimmed<br>Crust<br>Leathers | Finished<br>Leather |
|---------------------------------------------------|--------------------|------------------------------|----------------|-----------------------------------|--------------------------|---------------------------------|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|-----------------------------------------------|-------------------|------------------------------|---------------------|
|                                                   | Lime               |                              |                |                                   | 2                        | 4,5                             |                                            |                         |                                 |                                |                                               |                   |                              |                     |
|                                                   | Flesh Split        |                              |                |                                   |                          | 331,2                           |                                            |                         |                                 |                                |                                               |                   |                              |                     |
|                                                   | Fat                |                              |                |                                   |                          | 9,2                             |                                            |                         |                                 |                                |                                               |                   |                              |                     |
|                                                   | Limed<br>Trimmings |                              |                |                                   |                          | 40                              |                                            |                         |                                 |                                |                                               |                   |                              |                     |
|                                                   | Water              |                              |                |                                   |                          | 30                              |                                            |                         |                                 |                                |                                               |                   |                              |                     |
|                                                   | Shavings           |                              |                |                                   |                          |                                 |                                            |                         |                                 | 46,6                           |                                               |                   |                              |                     |
|                                                   | Other              |                              |                |                                   |                          |                                 |                                            |                         |                                 | 3,6                            |                                               |                   | 2,6                          |                     |
|                                                   | Trimmings          |                              |                |                                   |                          |                                 |                                            |                         |                                 |                                |                                               |                   | 12,3                         |                     |
| Effluent Volum                                    | ie [dm³]           |                              | 2 857          | 2 855                             | 265                      | 440                             | 3 450                                      | 1 720                   | 230                             |                                | 3 650                                         | 185               |                              | 207                 |

#### 1175 Table 45 Calculated hide substance and N-proteic contents' quota for bovine wet salted hides input and all process outputs<sup>40</sup>

| Lime - Fleshing         | g & Splitting | Raw<br>Hide | Soaked<br>Hides | Limed<br>Pelts -<br>Unsplit | Fleshed<br>in Lime<br>Pelts | Grain<br>Splits | Bated<br>Grain<br>Split<br>Pelts | Grain split<br>Wet Blue<br>Leather | Pressed<br>Grain Split<br>Leather | Shaved<br>Wet blue<br>Grain<br>Splits | Cust<br>Lreather | Finished<br>leather |
|-------------------------|---------------|-------------|-----------------|-----------------------------|-----------------------------|-----------------|----------------------------------|------------------------------------|-----------------------------------|---------------------------------------|------------------|---------------------|
| Hide                    | Recovered     | 100%        | 92%             | 76%                         | 66%                         | 42%             | 39%                              | 39%                                | 39%                               | 34%                                   | 32%              | 32%                 |
| Substance               | [kg]          | 370         | 340             | 280                         | 243                         | 154,2           | 145                              | 145                                | 145                               | 125,3                                 | 117,5            | 117,5               |
| Flesh Split             | Recovered     |             |                 |                             |                             | 22%             |                                  |                                    |                                   |                                       |                  |                     |
| Flesh Split             | [kg]          |             |                 |                             |                             | 78,8            |                                  |                                    |                                   |                                       |                  |                     |
| Hair                    | Recovered     |             |                 | 8,1                         |                             |                 |                                  |                                    |                                   |                                       |                  |                     |
| Пан                     | [kg]          |             |                 | 30                          |                             |                 |                                  |                                    |                                   |                                       |                  |                     |
| Fleshings               | Recovered     |             |                 |                             | 10%                         |                 |                                  |                                    |                                   |                                       |                  |                     |
| riesnings               | [kg]          |             |                 |                             | 37,5                        |                 |                                  |                                    |                                   |                                       |                  |                     |
| Reject Lime<br>Splits & | Recovered     |             |                 |                             |                             | 3%              |                                  |                                    |                                   |                                       |                  |                     |
| Trimmings               | [kg]          |             |                 |                             |                             | 9,5             |                                  |                                    |                                   |                                       |                  |                     |
| Shavings                | Recovered     |             |                 |                             |                             |                 |                                  |                                    |                                   | 5%                                    |                  |                     |
| Shavings                | [kg]          |             |                 |                             |                             |                 |                                  |                                    |                                   | 19,7                                  |                  |                     |
|                         | Recovered     |             |                 |                             |                             |                 |                                  |                                    |                                   |                                       | 2%               |                     |

<sup>&</sup>lt;sup>40</sup> Recovered hide substance quota (%) for each output – including flesh splits – calculated from the primary dataset of Table 44.

| Lime - Fleshing & Splitting            |      | Raw<br>Hide | Soaked<br>Hides | Limed<br>Pelts -<br>Unsplit | Fleshed<br>in Lime<br>Pelts | Grain<br>Splits | Bated<br>Grain<br>Split<br>Pelts | Grain split<br>Wet Blue<br>Leather | Pressed<br>Grain Split<br>Leather | Shaved<br>Wet blue<br>Grain<br>Splits | Cust<br>Lreather | Finished<br>leather |
|----------------------------------------|------|-------------|-----------------|-----------------------------|-----------------------------|-----------------|----------------------------------|------------------------------------|-----------------------------------|---------------------------------------|------------------|---------------------|
| Crust Finished<br>Leather<br>Trimmings | [kg] |             |                 |                             |                             |                 |                                  |                                    |                                   |                                       | 7,8              |                     |

1177 The preliminary set of allocation values used during the Screening Survey had then undergone corrections 1178 and improvements based on primary datasets gathered for the quantities of the various outputs and each 1179 RP with most pronounced the revision of values for Sole leather production – the quantities used are the 1180 average of primary datasets generated at 7 Sole leather manufacturing plants. The Allocation Factors Default

values were consequently updated and simplified as requested and recommended by the TS, namely various

- 1182 categories of the original allocation default values were merged and consolidated with an average value cited 1183 in its final version. This was necessary as the variations of allocation factor values for several scenarios and
- 1184 processes varied in most cases less than 3% and in any case by less than 10%.
  - In practise, when Tannery primary datasets exist regarding the quantities of generated waste, then the actual
     biobased protein content and hide substance can be calculated as shown with Equation 2

# 1187 <u>Equation 2</u>: N-proteic content of output per DU [g/m<sup>2</sup>] = Quantity per DU [g of output per m<sup>2</sup>] x Average N-proteic content [g-N-proteic per g of output]

At this point, it becomes apparent, that output and Tannery specific allocation factors can be calculated from collected Sector specific datasets of high quality for all variables in Equation 1, or, by using primary data for the quantities of outputs and the sector specific high quality average values for their N-proteic average content per declared unit. This, in turn, is possible, since the reference flow value for each processing input material is calculated or the default values cited in Table 41 are used for this purpose – see Equation 3.

1194Equation 3: Allocation factor per output [%] =  $100 \times \text{Quantity of N-proteic content or Hide Substance of}$ 1195output [g / m²] / N-proteic or hide substance content of input processing material, [g / m²]

## 1196 Differences between PEFCR and EPD allocation methods for bovine grain and split leather

1197 It has been proposed and applied for all previous Environmental Product Declarations (EPDs) the use of a 1198 theoretical 50/50 allocation between the flesh splits and the grain split generated during the splitting 1199 mechanical operation, regardless if applied, in green, lime, pickled or limed state.

This option is based on an alleged equal division (slicing) of the limed pelts or wet blue leathers in parallel to the grain surface of its full substance. In a nutshell, a presumed, but not measured, whilst for split in lime pelts and lime flesh splits a Standard Testing Method or Device (Measuring Machine) does not exist. This methodology is a simplification and risks in certain cases not reflecting the reality, as graphically demonstrated by Figure 7 of UNIDO Mass Balance in Leather Processing.

1205 Figure 7 Area yield of grain leather and split leather (green - raw hide, brown - grain leather, blue - split leather)



1206

1207 Moreover, according to UNIDO benchmark and mass balance for leather processing the output products for 1208 bovine leathers with average surface area 4 m<sup>2</sup> / hide are: 60 m<sup>2</sup> of split against 138 m<sup>2</sup> of grain finished 1209 leathers, namely 30.3% for flesh split and 69.7% for grain split allocation, based on relative surface area 1210 measurements, but also the average allocation factors that we have used based on average N-protein 1211 content, respectively.

- 1212 The allocation factor of 50/50, between the grain and flesh split ignores thus the UNIDO benchmark and mass 1213 balance for tanneries. On the other hand, the allocation factors proposed are in close agreement with the
- default allocation factors proposed with the PEFCR for the hair burn system where there is no hair by product is recovered (29.1% and 70.9%, prior to consolidation and averaging respectively.

# 1216 Conclusions

- 1217 Literature data as used for the purposes of the calculations have been reviewed and incorporated in the
- 1218 "Feasibility survey and technical preliminary study for the recovery and reuse of Chromium as well as the
- 1219 Management of biosolids and solid waste of the IN.PA of Leather" (National Bank for Industrial Development
- 1220 S.A., August 1997, Athens, Study offices: M. Bakalis, Dr. P. Markantonatos and Dr. A. Paraskevopoulou.
- 1221 However, it ought to be noted that:
- 1222 1. The itemised list of references for specific data is given as required with specific reference to the data used;
- A step-by-step description of the allocation methodology applied for the generation of the default allocation factors in conjunction with the equations applicable for the determination of product and Tannery specific allocation factors starting from complete or partial primary data can be found in the previous sections;
- 12283. The preliminary allocation factors calculated for the Screening Survey and their consolidated and<br/>simplified final version together have been provided;
- 12304. Corrections regarding heavy full vegetable tanned sole leather were integrated (Screening Survey<br/>results from 7 tanneries) in the current version of the PEFCRs;
- 12325. Specific and verified allocation factors were calculated for the various semi-processed input1233processing materials with and without allocation to the process residues.
- Otherwise, it is rather simple: the sum of quotas (%) input to the process with raw or semi-processed materials that is recovered in finished or semi-processed grain split leather products, ending up in byproducts, solid waste, biosolids and effluent of the ETP is equal to the respective allocation factor for the impacts of the grain split leather. The allocation factor for the flesh split and recovered hair or wool have been determined and are equal to the relative quota (%) of N-protein content (quantifying hide substance content respectively) of flesh split, recovered hair or wool accordingly.
- 1240 These are average values for the balance of proteic-Nitrogen for the full or partial finished leather production 1241 cycle; when primary datasets exist these should be used instead.
- 1242 Conclusively, bio-based protein content measured or hide substance determined is de facto and as shown 1243 not only the most appropriate, but also the only transparent and verifiable measure of process efficiency of 1244 the product and value and production unit.
- Finally, it must be emphasised at this point, that the quantities of co-products, by-products and waste reported can vary significantly as a function of specific input material, output leather article and tannery. The thickness of the output pelts and leathers can result in significant variations of allocated hide substance content and need to be validated in future studies and values updated accordingly.